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Analysis of optical nonlinearity by defect states
in one-dimensional photonic crystals
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Enhancement of optical nonlinearity in one-dimensional photonic-crystal structures with a defect is considered
theoretically. It is shown that a large enhancement can be obtained for absorption saturation and degenerate
four-wave mixing efficiency as a result of large optical field amplitude of the localized photonic-defect mode at
the defect layer. The figure of merit of the use of the photonic-crystal structure is derived especially for sys-
tems in which the concentration of the nonlinear optical material can be arbitrarily adjusted. Optical bista-
bility is also predicted for optically dense samples. They can be applied in real photonic devices because of
their simple structure and the large enhancement obtained. © 1997 Optical Society of America
[S0740-3224(97)00802-3]
1. INTRODUCTION
Control of photon modes by photonic-crystal (PC) struc-
tures is expected to be a key technology for future photo-
nic devices. Much attention has been paid to the control
of spontaneous emission in PC structures.1 One of its
important goals is a thresholdless laser, which would be
available by placing a light-emitting center in a defect in
a three-dimensional PC structure, which has three-
dimensionally periodical dielectric-constant modulation.
For this type of devices, however, fabrication of the three-
dimensional structure with a period on the scale of visible
or near-infrared wavelengths is still a hard task. Non-
linear optical devices that use a PC structure are also in-
teresting targets. Low-threshold optical switching2 and
nonlinear optical diodes3 that use optical nonlinearity of
one-dimensional (1-D) PC structures have been proposed.
In these proposals the optical nonlinearity of the systems
is assumed to be distributed through the PC structure.
Large enhancement of optical nonlinearity, however,

can be achieved more easily by use of the high local field
of a localized photonic state at a defect in a 1-D PC struc-
ture. Since local light intensity can be made very high at
the defect by making use of the localized photonic-defect
mode, the optical nonlinearity of the material at the de-
fect can be effectively enhanced by many orders of
magnitude.4 For this purpose the 1-D structure is the
best candidate since the incident field is fully coupled to
the local mode only in 1-D structures. Devices that use
this scheme can be fabricated easily simply by placing
thin-film nonlinear optical material in a 1-D PC struc-
ture, and we have obtained preliminary results on the en-
hancement of optical nonlinearity in a system of a dye-
doped polymer film in a multilayer dielectric structure.5

This technique is promising especially for applications
such as dynamic holography, optical phase conjugation,
and two-dimensional optical signal processing, when thin-
film nonlinear optical material is used.
In this paper we will treat a multilayer stack of dielec-

trics with a defect layer at the center as a model structure
and describe the advantage of the use of this structure in
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comparison with a simple monolayer nonlinear optical
film. Input-intensity dependence of the transmittance
and the efficiency of the degenerate four-wave mixing will
be analyzed, and fundamental expressions which are use-
ful for experimental comparison will be derived. Optical
bistability, as a special case of the input-intensity depen-
dence of the transmittance, will also be described.

2. INTENSITY-DEPENDENT
TRANSMITTANCE
Quarter-wave stacks of two dielectrics with different re-
fractive indices, which have long been used for mirrors or
optical filters, are good examples of 1-D PC’s. They can
have a wide photonic band gap at the frequency where
Bragg reflection takes place. By placing a structural de-
fect at the center of the stack, a photonic-defect state that
is localized around the defect can be made. Intensity de-
pendence of the transmittance of such PC structures with
a defect is theoretically considered based on the model
structure shown in Fig. 1. The central layer, X, is the de-
fect layer, which has finite absorption. On both sides of
the defect layer are N bilayers of A and B, which are on
substrates S. The refractive indices of these layers are
assumed to be nA 5 1.46 and nB 5 2.35, which are the
values for silica and titania, respectively. This structure
can be easily made by vacuum deposition. The refractive
index of the defect layer, nX , is assumed to be 1.5. The
substrates are made of glass, and the refractive index of
them is assumed, for the convenience of the calculation, to
be equal to that of the defect layer. The layer thick-
nesses of the periodical part and the defect layer, dA , dB ,
and dX , are assumed to satisfy nAdA 5 nBdB
5 nXdX /2. In this case the transmission peak induced
by a photonic-defect state appears at the center of the
band gap (midgap position).
Calculated transmission spectrum for N 5 5, k

5 0.003, and nAdA 5 640 nm/4 is shown in Fig. 2,
where k is the extinction coefficient of the defect layer.
The width (FWHM) of the transmission peak is 3.6 nm.
When k 5 0, the transmittance at the midgap frequency
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is unity. In the figure it is decreased to ;50% because of
the finite absorption. The value of N 5 5 is a feasible
one, and most of the calculation in the discussion below
will be based on this value. When the optical thickness
of the defect layer, nXdX , is slightly changed from twice
that of the periodical part, the position of the peak is
shifted accordingly. In experiments the peak wavelength
can be tuned by use of this fact.5 The transmission spec-
trum and the local light intensity can be calculated by the
method of characteristic matrices.6

A calculated field pattern of light at the frequency of
the midgap transmission peak that is incident normally
upon this PC structure with N 5 5 and no absorbance of
the defect layer is shown in Fig. 3. The input light am-
plitude is normalized to unity in this figure. It can be
seen that the local field amplitude at the central defect
layer is greatly enhanced compared with the incident field
amplitude. The peak amplitude is calculated to be
(nB /nA)

N, which is equal to 10.8 for N 5 5. From this
fact, large optical nonlinearity is expected when an opti-
cally nonlinear medium is placed at the central defect
layer.
The transmission coefficient of the light field, t, at the

midgap frequency with finite absorption of the defect
layer is calculated as

t 5
22

2 coshS pk

nX
D 1 sinhS pk

nX
D F ~nB /nA!2N

1 1 ik/nX
1

1 1 ik/nX

~nB /nA!2N
G ,
(1)

and the transmittance, T, is

T 5 utu2. (2)

Fig. 1. Model of 1-D PC structures.

Fig. 2. Calculated transmission spectrum of a 1-D PC with a de-
fect with N 5 5, k 5 0.003, and nAdA 5 640 nm/4.
The spatially averaged intensity of light in the defect
layer, supposing the input intensity is unity, is calculated
as

G 5 T
nX

2pk
sinhS pk

nX
D H coshS pk

nX
D F S nB

nA
D 2N nX

2

nX
2 1 k2

1 S nA

nB
D 2NG 1 sinhS pk

nX
D 2nX

2

nX
2 1 k2 J . (3)

For large N such that

~nB /nA!N @ 1, (4)

these expressions can be simplified as

t 5
22

2 1
pk

nX
S nB

nA
D 2N , (5)

T 5
4

F2 1
pk

nX
S nB

nA
D 2NG2 , (6)

G 5
T
2 S nB

nA
D 2N, (7)

where it is assumed that

nX @ k. (8)

Calculation with the exact expressions, Eqs. (1)–(3),
shows that the approximate forms, Eqs. (5)–(7), yield re-
sults good enough for the following discussion when N
> 3.
The optical nonlinearity is assumed to be purely ab-

sorptive and to originate from absorption saturation in
the defect layer. The absorption centers can be general
at this point, although detailed discussion on the optimi-
zation of the nonlinearity will be given later on systems in
which the concentration of the absorption centers can be
arbitrarily controlled. The pure absorptive nonlinearity
can be justified supposing that the midgap frequency falls
in the central region of the absorption band and that the
dispersive contribution is small. This point is in contrast
to some reported cases of nonlinear Fabry–Perot étalons,
where the major contribution to the nonlinear transmit-

Fig. 3. Calculated field pattern of light at the frequency of the
midgap transmission peak that is incident normally upon the PC
structure with N 5 5 and with no absorbance of the defect layer.
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tance change is thought to be by dispersive
nonlinearity.7–9 The absorption of the defect layer is as-
sumed to be saturated as

k 5
k0

1 1 I/Is
. (9)

Here, I is the local intensity of light and IS is the satura-
tion intensity.
When a mean field approximation is adopted, i.e., the

local intensity that appears in Eq. (9) is assumed to be in-
dependent of the position in the defect layer as

I 5 GI in , (10)

where I in is the input intensity, then Eqs. (6), (7), (9), and
(10) are combined and lead to

~ y0 2 y !~ y 1 2 !2 2 xy 5 0, (11)

with

x [ 2S nB

nA
D 2N I in

IS
, (12)

y [
p

nX
S nB

nA
D 2Nk, (13)

y0 [
p

nX
S nB

nA
D 2Nk0 , (14)

T 5
4

~y 1 2 !2
. (15)

Equation (11) exhibits bistability for y0 . 16 or for unsat-
urated transmittance less than 1/81. This result is es-
sentially the same as that obtained by Szöke et al. for
nonlinear Fabry–Perot cavities.10 The mean field ap-
proximation, however, is not good for solid samples. As
can be seen from Fig. 3, the light intensity is highest at
the center of the defect layer, and almost zero at the
boundaries. Thus the absorption is saturated most
strongly at the center, and the absorption change of the
central position affects the transmittance most effec-
tively. This spatial hole-burning effect should be taken
into account for correct treatment.
If the peak transmittance of a PC structure with larger

N is assumed to be not much smaller than unity, the
magnitude of k is of the order of (nA /nB)

2N, as seen from
Eq. (6). The absorbed fraction of light for each round trip
of the cavity made by the defect is of the same order as k.
In this case the saturated extinction coefficient, which is
dependent on the position, can be safely replaced by a
position-independent effective value in calculation of
quantities such as the transmittance and the spatial pro-
file of the light intensity, and the spatial profile of light in
the defect layer without absorption can be used for that
with absorption.
The spatial intensity profile of light in the defect layer

can be approximated as

I~z ! 5 2GI in cos
2~p z /dX!~2dX /2 , z , dX/2!. (16)

Here, z is the position in the defect layer along the direc-
tion normal to the layer surface. The saturated extinc-
tion coefficient is dependent on the position as
k~z ! 5
k0

1 1 I~z !/IS
, (17)

where IS is the saturation intensity of the raw material.
Since the effect of the absorption change to the transmit-
tance is also proportional to the local intensity, the effec-
tive extinction coefficient is expressed as

k̄ 5

E
2dX/2

dX/2

k~z !I~z !dz

E
2dX/2

dX/2

I~z !dz

5 k0

2~A1 1 p 2 1 !

pA1 1 p
, (18)

with

p [ 2GI in /IS . (19)

We will use the functional form of Eq. (18) only in the
discussion of optical bistability below, and for discussions
on the enhancement of the optical nonlinearity of PC
structures we will use only the lowest-order response:

dk̄

dI in
5 2

3
2

kG/IS . (20)

Here k and G are the values for small input light. In
the discussion of the small-input response below, k will be
used instead of k0 , where the distinction between them is
of no significance. The expression above shows that ab-
sorption saturation, when the spatial hole-burning effect
is taken into account, is 3/2 times as effective as the result
of the mean-field approximation, as seen from Eqs. (9)
and (10). When the transmittance is appreciably
changed by absorption saturation, the dependence of the
transmittance on the input intensity is not linear. How-
ever, it can be regarded as almost linear up to the effec-
tive saturation intensity, where the saturation is half
that for infinite input intensity. Thus the effective satu-
ration intensity can be analyzed by calculating the
lowest-order dependence.
Transmittance change for weak input is calculated as

dT
dI in

5
dT
dk̄

dk̄

dI in
5

1
IS

24pk

nX
S nB

nA
D 4NF2 1

pk

nX
S nB

nA
D 2NG25

.

(21)

For the convenience of further discussion the notation be-
low is introduced:

D [
dT
dI in

IS . (22)

This quantity is a measure of the magnitude of the non-
linearity of transmittance of the sample normalized by
the nonlinearity of the raw material. With this notation,
for the PC structure,

DPC 5
24pk

nX
S nB

nA
D 4NF2 1

pk

nX
S nB

nA
D 2NG25

. (23)

This is plotted N 5 5 in Fig. 4. It can be seen that the
maximum transmittance change is obtained by a rela-
tively small value of k and that k larger than several
times the optimal value gives a significantly small nonlin-
ear optical effect.
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To compare the optical nonlinearity of a PC sample, us-
ing these expressions, with that of a naked sample, i.e., a
simple monolayer film of the nonlinear material, we cal-
culate the transmittance change of a simple film due to
absorption saturation. When boundary reflection can be
neglected, the weak-signal nonlinear transmittance
change of a film with extinction coefficient k8 and satura-
tion intensity IS is calculated as

Dnaked 5 exp~2a8L !@1 2 exp~2a8L !#. (24)

Here, L is the thickness of the film, and the absorption
coefficient a8 is related to the extinction coefficient as

a8 5
4pk8

l
, (25)

where l is the wavelength of the light in vacuum.
For samples with very small absorption such that

k ! ~nX /p!~nA /nB!2N (26)

or

a8L ! 1, (27)

the transmittance change is

DPC 5
3pk

4nX
S nB

nA
D 4N (28)

for PC samples and

Dnaked 5
4pk8L

l
(29)

for naked films. Since the thickness of the central defect
layer is L 5 l/2nX , the enhancement factor of the effec-
tive nonlinear susceptibility of a half-wavelength film in
the PC structure compared with the same film without
the PC structure is

F [ DPC /Dnaked 5
3
8 S nB

nA
D 4N. (30)

This factor is proportional to the fourth power of the
field-enhancement factor, (nB /nA)

N. This can be ex-
plained as follows. The excited-state population, which
causes the absorption saturation, is proportional to the lo-
cal intensity, or to (nB /nA)

2N. The third-order polariza-
tion is proportional to the product of the excited-state

Fig. 4. Normalized transmittance change of the PC sample with
N 5 5 plotted as a function of the extinction coefficient as ob-
tained in Eq. (23).
population and the local-field amplitude, i.e., to
(nB /nA)

3N. Emission intensity due to the third-order po-
larization is proportional to the product of the third-order
polarization and the local-field amplitude, i.e., to
(nB /nA)

4N. In short, the transmitted intensity change is
proportional to the fourth power of the local-field ampli-
tude irrespective of whether the nonlinear medium is in a
PC structure or not. From the expression above, nonlin-
earity enhancement as high as 5100 is expected for a PC
sample with N 5 5. For materials with fixed nonlinear-
ity this is the figure of merit expected by the use of the PC
structure.
For samples such as dye-doped polymer films, however,

the concentration of the nonlinear material can be opti-
mized for the maximum optical nonlinear effect. A na-
ked sample with a small extinction coefficient that satis-
fies Eq. (26) with N 5 5 has transmittance greater than
98%. It is not realistic to compare nonlinearity of
samples with such a low concentration. To understand
the advantage of using the PC structure as nonlinear op-
tical elements, one has to compare the nonlinearity of
samples with the optimized concentration of the nonlin-
ear material in each structure. For samples with finite
absorption, the intensity enhancement factor, G, is
greatly suppressed by the absorption in the nonlinear
layer, and the (linear) transmittance is also suppressed
by the absorption, as given in Eqs. (6) and (7). Depen-
dence of the value G on the extinction coefficient k is plot-
ted in Fig. 5 for the PC structure of N 5 5. It can be
seen that the intensity enhancement rapidly decreases
when k is increased and that k should be kept low enough
to fully make use of the light-field enhancement at the de-
fect layer. Since the nonlinear susceptibility for absorp-
tion saturation is proportional to the density of the dye,
i.e., proportional to the absorption coefficient, the largest
nonlinearity in transmittance for fixed number of layers
is realized by optimizing the absorption coefficient.
Maximization of either the transmittance change, D, or

the ratio of the change in the transmitted intensity to the
linearly transmitted intensity, D/T, can be more relevant
for the supposed purpose. Maximization of D is achieved
by setting

k 5
nX

2p S nA

nB
D 2N, (31)

Fig. 5. Dependence of the intensity-enhancement factor G on
the extinction coefficient k for the PC structure of N 5 5.
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or

T 5 0.64, (32)

and the maximized value is

DPC
max 5

384
3125 S nB

nA
D 2N. (33)

For naked films, on the other hand, maximum value of

Dnaked
max 5

1
4

(34)

is obtained for a8L 5 ln 2. By comparing these opti-
mized values, the enhancement of the nonlinear suscepti-
bility is

F D [ DPC
max/Dnaked

max 5
1536
3125 S nB

nA
D 2N. (35)

In a similar way, D/T is maximized for the PC struc-
ture by setting

k 5
nX

p S nA

nB
D 2N, (36)

or

T 5 4/9, (37)

and the maximized value is

S D

T D
PC

max

5
2
9 S nB

nA
D 2N. (38)

For naked films the maximum value of

S D

T D
naked

max

5 1 (39)

is obtained for a8L 5 `, or T 5 0. Even for a more re-
alistic value of the transmittance of, e.g., 10%, as much as
90% of the value shown in Eq. (39) is obtained. The en-
hancement of the nonlinear susceptibility is

F D/T [ S D

T D
PC

maxY S D

T D
naked

max

5
2
9 S nB

nA
D 2N. (40)

In either case of Eq. (35) or Eq. (40) the enhancement of
the nonlinear transmission change by use of the PC struc-
ture is proportional to (nB /nA)

2N, and enhancement fac-
tors of 57 and 26, for D and D/T, respectively, are ex-
pected for an N 5 5 structure or 6700 and 3000 for N
5 10.
The dependence of (nB /nA)

2N can be understood as fol-
lows. The local light intensity enhancement at the defect
layer is proportional to (nB /nA)

2N, which can be regarded
as an effective Q value of the microcavity made by the de-
fect. The nonlinearity of the raw material, however,
should be kept of the order of (nA /nB)

2N to fully make use
of the enhancement. The consequent amount of the
change in the extinction coefficient is of the order of unity.
The effect of this change on the transmitted intensity,
however, is again proportional to the intensity enhance-
ment, (nB /nA)

2N. Thus the finally obtained enhance-
ment factor of the effective nonlinearity is proportional to
(nB /nA)

2N. From another point of view, for samples with
similar transmittance, the nonlinearity enhancement is
only due to the reduction of the effective saturation inten-
sity, which is inversely proportional to the local intensity
enhancement at the defect layer.
The comparison between the optimized nonlinearity de-

scribed above shows the potential of the use of PC struc-
ture in nonlinear optical elements. For experimental
demonstration, however, it is more straightforward to
compare the magnitude of the nonlinearity of PC and na-
ked samples with the same transmittance. If the inside
structure of the nonlinear optical elements is not known,
transmittance is the only quantity characterizing the (lin-
ear) property of the elements. Equations (23) and (24)
are rewritten as a function of the transmittance as

DPC~T ! 5
3
2 S nB

nA
D 2NT2~1 2 AT !, (41)

Dnaked~T ! 5 T~1 2 T !. (42)

These are plotted for N 5 5 in Fig. 6. The nonlinearity
enhancement factor is

F ~T ! [ DPC~T !/Dnaked~T ! 5
3
2 S nB

nA
D 2N T

1 1 AT
,

(43)

which is plotted for N 5 5 in Fig. 7. It is seen from the
figure that the enhancement is larger as the transmit-

Fig. 6. Normalized transmittance change for the PC sample
with N 5 5 and for a naked sample plotted as a function of the
linear transmittance.

Fig. 7. Ratio of the normalized transmittance change for the PC
sample with N 5 5 and that for a naked sample, plotted as a
function of the linear transmittance.
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tance is larger, although the nonlinearity as shown in Fig.
6 becomes small for large transmittance. Reasonable en-
hancement, as high as about half of the maximum, can be
obtained for transmittance of ;50%, where the absolute
value of the nonlinearity takes values close to the maxi-
mum. Thus the obtained enhancement factor is propor-
tional to (nB /nA)

2N and ;50 for N 5 5 samples.
The determination of the number of the PC structure

bilayers, N, is important for practical applications. Since
the peak width is proportional to (nA /nB)

2N, fluctuation
in the layer thickness, or the spectral width of the light
utilized, can limit the practical number of layers, which
determines the achievable enhancement in optical nonlin-
earity. The value of N 5 5, as used in the preceding dis-
cussions, is very feasible, as seen from Fig. 2, and even
the value of N 5 10 is not difficult when a narrow-band
laser is used.
In the preceding description, the weak-field response is

mainly discussed. When the input intensity is high,
however, it can be shown that optical bistability can be
observed. Combining Eqs. (6), (7), (18), and (19), we ob-
tain following expressions, which are similar to Eqs. (11)–
(15);

Fy0 2
1

4
~ y 1 Ay2 1 8y0y !G ~ y 1 2 !2 2 xy 5 0,

(44)

with

x [ 2S nB

nA
D 2N I in

IS
, (45)

y [
p

nX
S nB

nA
D 2Nk̄, (46)

y0 [
p

nX
S nB

nA
D 2Nk0 , (47)

T 5
4

~y 1 2 !2
. (48)

The relation between the input intensity and the trans-
mittance is plotted in Fig. 8 for several values of y0 , which
characterizes the linear transmittance by Eq. (48). Opti-
cal bistability is observed for y0 . 20. The range of the
normalized input intensity, x, where bistability is ob-
served, is numerically calculated as a function of the lin-
ear transmittance, T0 , which is shown in Fig. 9. The
general trend of the relation between the input intensity
and the transmittance is very similar to that obtained
from Eqs. (11)–(15), which results from the mean-field
theory. Multistability is not observed, and the bistability
appears only in a single region of input intensity for large
enough values of y0 , which is in contrast with systems in
which dispersive nonlinearity is more effective than ab-
sorptive nonlinearity.

3. FOUR-WAVE MIXING EFFICIENCY
Efficiency of various nonlinear optical processes other
than the intensity-dependent transmittance discussed
above can be enhanced by the PC structure. In this sec-
tion the efficiency of degenerate four-wave mixing
(DFWM) is considered, in which three beams with wave
vectors of k1 , k2 , and k3 are incident upon the sample and
the intensity of the diffracted beam in the direction of
k1 1 k2 2 k3 is measured. Signal processing with
DFWM is one of the major possible application of thin-
film nonlinear materials as used in this study. Phase-
conjugated wave generation and dynamic holography can
also be regarded as DFWM processes.
The intensity-dependent transmittance change is, to

the lowest order, also a third-order nonlinear optical pro-
cess, as is DFWM, and can be treated in the same frame-
work. The transmitted light field can be expressed as a
sum of the linearly transmitted field and the field gener-
ated by the third-order polarization as

Eout 5 Eout
~1 ! 1 Eout

~3 ! . (49)

For the observation of the intensity-dependent transmit-
tance a single beam is used as the input. Consequently,
all of the output field has the same wave vector as that of
the input. The third-order field contributes to the trans-
mittance change by interference with the linear field. In
the DFWM process, on the other hand, the two or three
input beams have different wave vectors, and the wave
vector of the third-order field is different from that of any
of the input beams. Thus the intensity of the DFWM
light is proportional to the squared magnitude of the
third-order output field. Since under the condition of Eq.

Fig. 8. Relation between the input intensity and the transmit-
tance for several values of y0 , which characterizes the magnitude
of the linear transmittance.

Fig. 9. Range of the normalized input intensity, x, where bista-
bility is observed, as a function of the linear transmittance, T0 .



354 J. Opt. Soc. Am. B/Vol. 14, No. 2 /February 1997 Hattori et al.
(8) the transmission coefficient is always real and the sign
of it does not change, the output intensity in the single-
beam configuration is expressed as

Iout 5 ceuEoutu2 5 ce$uEout
~1 !u2 1 2uEout

~1 !Eout
~3 !u% (50)

in the approximation of third-order nonlinearity. The
transmittance is

T 5
Iout
I in

5 T0 1 2AT0UEout
~3 !

E in
U, (51)

where E in is the input light field amplitude and T0 is the
linear transmittance, which is used only when distinction
from the intensity-dependent transmittance is required.
For the derivation of this equation the following relation
is used:

Eout
~1 ! 5 AT0E in . (52)

By differentiating Eq. (51) by I in , we obtain

dT
dI in

5 2AT0
d
dI in

UEout
~3 !

E in
U. (53)

Since Eout
(3) /E in should be proportional to I in ,

uEout
~3 !u 5

I in
2AT0

dT
dI in

uE inu. (54)

The DFWM intensity can be obtained from this relation
as

IDFWM 5
1
4T S dTdI inD

2

I in
3 . (55)

This equation generally relates the magnitude of the non-
linear transmission to the DFWM intensity.
When notation

W [ IDFWMIS
2 /I in

3 (56)

is introduced for the normalized DFWM generation effi-
ciency, it is expressed as a function of the linear transmit-
tance as

W PC 5
9
16 S nB

nA
D 4NT3~1 2 AT !2 (57)

for PC structures and

W naked 5
1
4
T~1 2 T !2 (58)

for naked samples. They are shown for N 5 5 in Fig. 10.
They have maximum values when T 5 9/16 and T
5 1/3 for PC and naked samples, respectively. The ratio
is also plotted as a function of the linear transmittance in
Fig. 11. The general behavior is similar to the T depen-
dence of D,as shown in Figs. 6 and 7. The enhancement
in the DFWM intensity is larger as the transmittance is
larger, although the nonlinearity as shown in Fig. 10 be-
comes small for large transmittance. Reasonable en-
hancement, as high as about one third of the maximum,
can be obtained for transmittance of ;50%, where the ab-
solute value of the nonlinearity takes values close to the
maximum. The obtained enhancement factor is propor-
tional to (nB /nA)

4N and more than 2000 for N 5 5
samples.

4. SUMMARY
In summary, enhancement of optical nonlinearity in 1-D
PC structures with a defect was considered theoretically.
It is shown that large enhancement can be obtained for
absorption saturation and DFWM efficiency as a result of
high optical field amplitude of the localized photonic-
defect mode at the defect layer. The figure of merit of the
use of the PC structure is derived especially for systems
in which the concentration of the nonlinear optical mate-
rial can be arbitrarily adjusted. Optical bistability is
also predicted for optically dense samples. They can be
applied in real photonic devices because of their simple
structure and the large enhancement obtained. We have
already obtained preliminary results that are consistent
with the theoretical analysis described here.5
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