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Toshiaki Hattori, Noriaki Tsurumachi, Sakae Kawato, and Hiroki Nakatsuka
Institute of Applted Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
(Received 4 Yanuary 1994)

The dispersion relation of photons transmitting through a photonic one-dimensional quasicrystal arranged in
a Fibonacci sequence was observed by measuring the spectrum of the phase change of the transmitted light
using a Michelson-type interferometer. The phase spectrum obtained clearly showed the self-similar structure

characterlstlc to dispersion curves of Fibonacci lattices.

Since the discovery of an Al-Mn alloy with icosahedral
symmetry,! much attention has been focused on quasiperi-
odic systems. A lot of work has been concerned with the
propagation of electrons or other classical waves in one-
dimensional quasicrystals. Among them, Fibonacci lattices
are of particular interest.>™* In Fibonacci lattices, all the
states are critically localized. The energy spectrum has a
fractal structure and forms a Cantor set with zero Lesbegue
measure. Wave functions can also have a fractal behavior.
Merlin et al.® have grown a Fibonacci lattice made of GaAs
and AlAs and have studied x-ray diffraction and Raman scat-
tering of it. Since then, several experimental studies have
been reported on the wave propagation in Fibona001 lattices.
Transmission of bulk acoustic phonons surface acoustic
wave,’ and third sound along superfluid helium thin film®
have been studied. They gave the energy spectrum of these
waves in the Fibonaaci lattices. The phase, however, of the
transmitted waves was not measured in these studies. Disper-
sion relation of waves propagating in the quasiperiodic sys-
tem can be obtained by measuring the amplitude and the
phase of the transmitted wave.

In this paper, we report on our experimental study of
the dispersion relation of photons propagating through a Fi-
bonacci lattice composed of two dielectric materials. Pho-
tonic band formation in periodic dielectric structures and
localization of light in random structures have been the sub-
ject of great interest in recent years.” Studies on photonic
quasiperiodical structures will further extend this area of re-
search. The photonic Fibonacci lattlce was proposed by
Kohmoto, Sutherland, and Iguchi.'® They predicted a fractal
behavior of the transmission spectrum. Compared with elec-
tronic systems, the advantage of studying photonic lattices is
obvious. (i) Inelastic scattering of photons in the lattice can
be negligibly small. (ii) There is essentially no interaction
between photons. (iii) The reflectivity by a single interface
can be relatively large. It is 23% in amplitude in the present
study. It leads to the study of wave propagation in the regime
where the single scattering approximation is not valid. (iv)
Various sophisticated measurement techniques can be ap-
plied. Energy-resolved or time-resolved measurements with
very high resolution are possible. The present study is a good
example of this advantage.

A photonic Fibonacci lattice was prepared according to
the model proposed by Kohmoto, Sutherland, and Iguchi.!®
The sample is a multilayer dielectric film of SiO, and TiO,
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deposited on a 1.5 mm-thick glass substrate. The sequence of
the layers is based on the Fibonacci sequence, which is de-
fined by »

+1={Sj—1>Sj}a

So={A},51={B}.

@

In the present study the sequence was Sg. The number of the
layers in Sy is 55, which is Fibonacci number F,. Layer A
corresponds to SiO,, and B to TiO,. The optical thickness
of each layer was designed to be 633 nm/4, ie.,
4n,d, =4ngdp=633 nm, where n, and ny are the refractive
indices of SiO, and TiO,, and d4 and dg are the physical
thicknesses of layers A and B. These layers were deposited
on a glass substrate by vacuum deposition, and the thickness
of each layer was monitored by the change in the resonance
frequency of a quartz oscillator. The calibration of the quartz
oscillator was performed by measuring the wavelength of the
maximum reflectivity for several thicknesses of single-layer
films on a substrate. Since the reflectivity of a single-layer
film is maximum or minimum at the quarter-wave condition,
the resonance frequency change of the quartz oscillator for
the quarter-wave- thickness of each material for 633 nm was
obtained by interpolating between the measured values.
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FIG. 1. The transmission spectrum of the sample obtained by (a)
calculation based on an ideal Fibonacci lattice and (b) using a
monochromator.
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FIG. 2. (a) The calculated photonic dispersion relation of the
periodic crystal which consists of the Sy Fibonacci sequence. (b)
The calculated phase of the light transmitted through the Sy Fi-
bonacci lattice from the air to the glass substrate.

The transmission spectrum of the sample is shown in Fig
1. Figure 1(a) is the calculated transmission spectrum of the
Fibonacci lattice on a glass substrate. Interference of light
due to the reflection by the other surface of the substrate was
neglected. The values of the refractive indices used are 1.46,
2.35, and 1.5 for SiO,, TiO,, and the glass substrate, respec-
tively. Figure 1(b) is the transmission spectrum of our sample
obtained with a monochromator. Comparing Figs. 1(a) and
1(b) with each other, we see that correspondence of peaks
and dips between the calculated one and the measured one is
fairly good, except for a slight shift of the calculated spec-
trum to the higher frequency. We can attribute this shift to a
small error in the calibration of the optical thickness of each
layer. The best agreement between the calculated and the
experimental spectra was obtained by assuming a value of
644 nm/4 instead of 633 nm/4. We will adopt this value in
the following discussion in this paper. Looking into details of
features in the two spectra, there are two wide gaps around
570 THz and below 380 THz, where the transmissivity is
almost zero. The region between the gaps is divided into
three by two transmission dips. Each of these three is divided
into three again by two shallower dips. In Fibonacci lattices
with increasing generations, the trifurcation is repeated, re-
sulting in a self-similar structure of the transmission spec-
trum. This trifurcation structure is clearly seen in the experi-
mentally observed spectrum. Imperfect agreement of the
experimental spectrum with the calculated one is probably
due to small fluctuations in the thickness of each layer and to
optical dispersion of light in the materials.

In Fig. 2(a), the dispersion relation of photons in an Sy
Fibonacci lattice is shown. Periodic boundary conditions
were used in the calculation. The gaps are located equidis-
tantly at wave vectors of integer times of 7r/L with L being
the total thickness of the lattice. The two largest gaps at
217 and 347 correspond to the gaps observed in the trans-
mission spectrum, and other small gaps to transmission dips.
The numbers 34 and 21 are Fibonacci numbers Fg and F5.
The region between these gaps has a length of Fg=13. This
region is divided by smaller gaps at 267 and 29#. The dif-
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FIG. 3. The experimental schematic for the interferometric mea-
surement of the amplitude and the phase of the light transmitted
through a photonic Fibonacci lattice.

ference between these numbers and 21 or 34 are again Fi-
bonacci numbers F5=8 and F =35, respectively. For higher
generations of Fibonacci sequences, the trifurcation structure
grows self-similarly, and the ratio F;, /F; converges to the
golden mean, (1+ \/g)/Z. These beautiful properties of gap
positions in a Fibonacci lattice, however, can only be ob-
served when the wave vector of photons is measured. Be-
cause of the large modulation of the dielectric constant, the
dispersion relation in the present sample is far from linear
although the underlying dispersion relation of photons in free
space is linear, and the gaps are not located equidistantly in
energy space.

The wave vector of photons transmitting through a Fi-
bonacci lattice can be obtained by measuring the phase of the
light wave, since the phase, ¢, is related to the wave vector,
k, and the sample thickness, L, by ¢=kL. In Fig. 2(b) the
calculated spectrum of the phase change of light transmitted
through the S¢ Fibonacci lattice from the air side to the glass
substrate i shown. Although discontinuities at gaps in the
dispersion relation have disappeared, and the curve is
smoothly connected because of the finite size of the system,
the positions of the gaps and the overall shape are repro-
duced very well in the phase spectrum.

Experimentally, the amplitude and the phase of the light
transmitted through the sample were obtained by a Fourier-
transform analysis of interferograms obtained by a
Michelson-type interferometer as shown in Fig. 3. The light
source for the interferometer was a halogen lamp, and the
light was focused to a 100-um pinhole and collimated by a
lens. The light was divided into two arms by a beam splitter
cube, reflected by corner-cube prisms, combined by the same
beam splitter, and detected by a photomultiplier tube. The
path length of one arm was modulated at 20 kHz by a piezo-
electric actuator attached to the corner-cube prism. The am-
plitude of the path-length modulation was about 250 nm. The
path length of the other arm could be scanned by a stepping-
motor-driven translation stage (Suruga, R10-80L). One step
of the stepping motor nominally. corresponded to "a path
length of 44 nm. The output of the photomultiplier tube was
fed into a lock-in amplifier, and the signal at the frequency of
the path-length modulation was measured. A beam of light at
632.8 nm from a He-Ne laser was passed in the interferom-
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FIG. 4. The interferograms obtained by the Michelson-type in-
terferometer. (a) The autocorrelation. (b) The cross correlation.

eter parallel to the white-light beam, and the interferogram
was simultaneously monitored for the calibration of the path
length. .

Two interferograms were obtained using this setup. One
was the autocorrelation of the white light. The other was the
cross correlation of_the light before and after transmisson
through the Fibonacci lattice. The cross correlation was ob-
tained by inserting the Fibonacci lattice on a glass substrate
into one arm of the interferometer, and a glass substrate of
the same thickness without a Fibonacci lattice on it into the
other arm. Thus the change of the optical path length due to
the substrate was compensated for. The complex transmis-
sion coefficient, #(w), of the Fibonacci lattice can be ob-
tained by the following equation:

_ﬁ{cc(ﬂ}
(O=Fa)

Here, C4(7) and C(7) are the autocorrelation and the cross
correlation, with 7 being the delay time, and %9 }denotes the
Fourier transform of the function in the bracket. The trans-
missivity of light through the sample is the squared magni-
tude, |#(w)|?, and the phase spectrum of the light is given by
(w).

The autocorrelation and the cross correlation obtained in
this interferometric measurement are shown in Fig. 4. These
are not the autocorrelation or the cross correlation of the
light in a strict sense, since we measured the signal ampli-
tude by the path-length modulation technique. The signals
obtained correspond to the time derivative of the true corre-
lation when the modulation amplitude is small compared
with the wavelength of the light. The transmission coeffi-
cient, however, obtained by Eg. (2) is not affected by this
fact. In this sense, we can safely treat them as the autocorre-
lation or cross-correlation functions. We note here that the
obtained cross correlation can be regarded as the wave shape
of the optical pulse after the transmission through the Fi-
bonacci lattice which originally had a wave shape of the
autocorrelation. The temporal width of the autocorrelation,

=|t(w)|expli $(o)]. @
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FIG. 5. The transmission spectrum of the sample obtained by
Fourier transformation of the interferograms measured by using the
Michelson interferometer.

which was about 6 fs, determines the time resolution of this
time-domain measurement. This interferometric technique
using white light for the time-domain observation of time-of= -
flight profiles with ultrahigh time resolution can be appli-
cable to studies of various types of coherent propagation
phenomena. The time-of-flight profile of the Fibonacci lattice
is expected to simply represent the spatial density correlation

-of the lattice in the limit of small refractive-index modula-

tion. It is not the case, however, with the present sample,
where the refactive-index ratio is as large as 1.6. Thus a
Fourier-transform analysis of the correlation data is required
to elucidate the nature of the photonic state in the lattice.
The transmissivity obtained by the Fourier transformation
is shown in Fig. 5. The remarkable agreement of it with the
spectrum obtained by a conventional method using a mono-
chromator demonstrates the accuracy of the present Fourier-
transform technique. In Fig. 6, the phase spectrum of-the
transmitted light obtained by the Fourier transformation is
shown. Shifts of the phase by multiples of 27 are arbitrary.
Because of imperfect compensation of the path-length
change due to the substrate, the resulting phase spectrum can
have a small offset proportional to the frequency. By match-
ing the spectrum obtained with the calculated one, the thick-
ness of the glass substrate without a sample was estimated to
be 2.9 pm larger than that of the substrate with the Fibonacci
lattice on it. The spectrum shown is a corrected one using
this value. At the frequency regions of the two largest gaps
the phase is not plotted since the transmitted light was too
weak there to obtain a value of the phase with enough accu-
racy. The phase spectrum obtained shows very good agree- -
ment with the calculated one as shown in Fig. 2(b), and
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FIG. 6. The phase of the light transmitted through the Fibonacci
lattice obtained by the Fourier-transform interferometery.
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clearly shows the self-similar structure of the dispersion
curve typical of Fibonacci lattices.!! Besides the positions of
the largest gaps, smaller gaps are also clearly observed at the
right positions, and the overall shape of the spectrum agrees
very well with the calculated phase spectrum. Thus we could
actually observe the dispersion relation of photons in a one-
dimensional quasiperiodic lattice experimentally.

In summary, a photonic Fibonacci lattice was made by
depositing two dielectric materials on a glass substrate, and
the dispersion relation of photons was experimentally ob-
served by a Fourier-transform technique using a Michelson-
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type interferometer. The phase spectrum obtained clearly
shows the self-similar structure of the dispersion curve typi-
cal of Fibonacci lattices.

Recently, we have been informed that Gellermann et a
have prepared similar Fibonacci samples, and observed their
transmission spectra.
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