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A new method for waveform measurement of photon echoes using a modified Michelson interferometer has been devel-
oped. The experimental setup uses collinear geometry, and photon echo signals are detected using a double-phase modulation
technique. The amplitude and phase of photon echoes and those of excitation pulses are simultaneously measured by this tech-
nique. The method has been applied to a photon echo experiment on a dye solution. The results are explained using a stochastic
modulation model with an accumulation effect of population grating.
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1. Introduction

Photon echo spectroscopy is a powerful nonlinear optical
technique for probing coherent dynamics in various types of
materials.1) In a system described by the simple Bloch equa-
tion of a two-level system, the time-integrated energy of pho-
ton echo pulses decays exponentially as a function of the de-
lay time of the second excitation pulse with respect to the
first excitation pulse, and the decay rate is inversely propor-
tional to the dephasing time of the system. The recent devel-
opment of femtosecond lasers, however, has made it easier to
carry out photon echo experiments on systems in which the
dynamics occur in the femtosecond time scale and the Bloch
equation fails to describe the dynamics.2,3) Simply measur-
ing the time-integrated intensity of photon echo signals in
these systems does not provide enough information on the
dynamics of the system. In order to obtain details of the dy-
namics, the time-resolved measurement of photon echo wave-
forms is required. In recent years considerable effort has
been put into developing interferometric measurements of the
phase and amplitude of transient nonlinear optical polariza-
tion on a femtosecond time scale, which contains more valu-
able information on the dynamics of the system than the time-
integrated energy of the nonlinear signal. For example, the
time-dependent Stokes shifts can be explored and the spec-
tral densities that affect electrons and energy transfers can be
obtained from these data.1,4)

In recent years, several groups have reported techniques
for measuring amplitude and phase of waveforms of photon
echoes. Some of them have used time-domain interferomet-
ric techniques,5–7) where two or three pump pulses are inci-
dent on the sample noncollinearly and the interference be-
tween the diffracted photon echo pulse and a reference pulse
is observed. This technique requires a precise alignment of
the interferometers. Most recently, spectral interferometric
methods have been applied.4,8–10)These methods have the ad-
vantage of obtaining interferograms by a single shot.

In this paper, we present a new method to observe the wave-
forms of photon echoes. The technique is based on a time-
domain interferometric method using collinear excitation. We

a collinear accumulated photon echo technique in which
collinear heterodyne detection and phase modulation tech-
niques were used.11–14)By this method only the accumulated
photon echo signals can be detected with high signal-to-noise
ratio and the necessary alignment is much easier to achieve
than that for the noncollinear geometry.

On the other hand, double-frequency modulation technique
has been used by several groups for the detection of signals
from nonlinear optical processes.15) Use of this technique is
very effective for obtaining a good signal-to-noise ratio. Ap-
plication of this technique has been limited so far to ampli-
tude modulation using mechanical choppers. In interferomet-
ric experiments, however, phase modulation is very effective
not only for linear optical measurements16) but also for non-
linear optical measurements.17)

Using the present technique, we measure cross-correlation
interferograms between the photon echo signal and the ref-
erence signal using a modified Michelson interferometer. In
this method, the two excitation pulses are incident collinearly
on the sample, and overlap with a reference beam after pass-
ing through the sample. The excitation beam which passes
through the sample contains two linearly transmitted exci-

measure cross-correlation interferograms between the photon
echo signal and a reference signal using a modified Michel-
son interferometer. In this method, the two excitation pulses
are incident on the sample collinearly and overlap with the
reference beam after passing through the sample. The beam
contains linearly transmitted light and nonlinear fields of sev-
eral origins. We extract photon echo signals from it by apply-
ing a double-phase modulation technique. The interferogram
between the photon echo signal and the reference pulse is ob-
tained by modulating the path length of the two excitation
pulses at different frequencies and measuring the signal com-
ponent of the sum frequency. The necessary alignment for
this method is much easier to achieve than that for the non-
collinear geometry, and the time resolution degradation due
to noncollinear interaction of the excitation beams is absent.

2. Double-Phase Modulation Technique

In photon echo experiments, a noncollinear geometry is
generally used, because the echo signal in this geometry can
be easily distinguished from the excitation pulses. How-
ever, some collinear photon echo measurements have also
been carried out recently. Nakatsuka and coworkers reported



Here,

E(t) = E1(t)+ E2(t) (2)

is the incident light field andS(3)(t3, t2, t1) is the third-order
response function. When we modulate the path length of the
first pulse at frequencyf1 with amplitudeA1 and that of the
second pulse at frequencyf2 with amplitudeA2, the electric
fields E1(t) andE2(t) are modulated as follows.

tation pulses and the light field arising from several non-
linear processes. Only the photon echo signal is extracted
from this beam using the double-phase modulation technique.
The pulse sequence used in the experiments is schematically
shown in Fig. 1. The second excitation pulse is delayed by
τ from the first excitation pulse, and the delay time of the
reference pulse with respect to the second excitation pulse is
denoted byτref. We obtained the interferogram by sweeping
the delay time of the reference pulse. We combined the phase
modulation technique and the double-frequency modulation
technique to extract the photon echo signal using collinear
geometry. We modulated the path length, or the delay time,
of the first pulse at frequencyf1, and that of the second pulse
at f2. By detecting thef1 + f2 component in the transmit-
ted intensity using a lock-in amplifier, the cross-correlation
of the photon echo light field with the reference field is ob-
tained. The technique is very powerful because we can sepa-
rately obtain the first pulse, the second pulse and the photon
echo signal by simply tuning the lock-in detection frequency
to f1, f2, and f1+ f2.

Photon echo emission is a third-order nonlinear optical pro-
cess, which is the lowest-order process in centrosymmetrical
media. In conventional experiments using the noncollinear
geometry as shown in Fig. 2, a photon echo signal can be eas-
ily detected selectively because a photon echo is emitted in the
directions of 2k1 − k2 and 2k2 − k1. Here it is assumed that
the first excitation pulse,E1, has a wave vector ofk1, and the
second excitation pulse,E2, has a wave vector ofk2. When
E2 follows E1, only the 2k2 − k1 component appears, and
whenE2 precedesE1, only the 2k1− k2 component appears.
On the other hand, in collinear experiments, contributions of
all the third-order nonlinear optical processes are contained in
the same beam.

In the following text, it will be shown how the third-order
nonlinear signal is modulated when the two incident pulses
are phase modulated atf1 and f2, respectively, and how the
photon echo signal can be extracted. We set the electric field
of the first pulse asE1(t), and that of the second pulse as
E2(t). The third-order nonlinear signal,ENL(t) is described
as follows,1)

ENL(t) ∝
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1S(3)(t3, t2, t1)

· E(t − t3)E(t − t3 − t2)E(t − t3− t2− t1).

(1)

E1(t)→ E1

(
t + A1

c
sin(2π f1t)

)
= E1(t) exp(−iωLt) exp

[
−i
ωL A1

c
sin(2π f1t)

]
+ c.c. (3)

E2(t)→ E2

(
t + A2

c
sin(2π f2t)

)
= E2(t) exp(−iωLt) exp

[
−i
ωL A2

c
sin(2π f2t)

]
+ c.c. (4)

Here,ωL is the center frequency of the electric field andE1(t) andE2(t) are the envelopes of the incident fields,E1(t) andE2(t),
respectively. Here, it is assumed that the amplitudes of the delay-time modulation,A1/c andA2/c, are small compared to the
widths of the envelopes of the input pulses, and that the delay-time modulation does not induce modulation in the amplitude of
the pulses.

By substituting eqs. (2)–(4) into eq. (1),ENL(t) becomes as follows:

ENL(t) ∝
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1S(3)(t3, t2, t1)

·
∑

i , j ,k=1,2

{
Ei (t − t3)E

∗
j (t − t3 − t2)Ek(t − t3− t2− t1) exp[−iωL(t − t3− t1)]

1st 2nd echo

ref.

τ

τref

t

t

Fig. 1. Pulse sequence used in the collinear interferometric photon echo
experiment. The interferogram is obtained by sweeping the delay of the
reference pulse,τref.
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Fig. 2. Beam configuration in conventional noncollinear photon echo or
pump-probe experiments.
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}
. (5)

We neglect the terms contributing to the third-harmonic generation since they have no effect on the data obtained in the present
experiment. Since the period of the phase modulation in this experiment is much longer than the incident pulse width and
the characteristic response time of the sample, we can regard the phases, 2π fi t , of the modulation as constant, 2π fi T , for
the purpose of the integrals in eq. (5). After expanding this equation, we can separate it into four groups according to the
modulation frequency as:

ENL(t) = ENL:1(t)+ ENL:2(t)+ ENL:3(t)+ ENL:4(t) (6)

where

ENL:1(t) = N
∫ ∞
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∫ ∞
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∫ ∞
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·
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≡ ENL:1(t) exp(−iωLt) · exp
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≡ ENL:3(t) exp(−iωLt) · exp
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ENL:4(t) = N
∫ ∞
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·
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with N being a proportionality factor. Here,ENL:1(t) is the
term representing the electric field that is modulated at fre-
quency f1 and contributes to the third-order nonlinear sig-
nal that appears in the direction ofk1 in the conventional
noncollinear configuration. It contains self-saturation, pump-
probe, perturbed free induction decay and coherent coupling
terms. ENL:2(t) is modulated atf2 and contributes to thek2

signal in the noncollinear geometry.
The third and fourth terms,ENL:3(t) and ENL:4(t), are the

photon echo terms contributing to the 2k2− k1 and the 2k1−
k2 signals, respectively, in the noncollinear geometry. These
terms can be expanded with the Bessel function,Jn(x), as

ENL:3(t) = ENL:3(t) exp(−iωLt)
∞∑

n=−∞

∞∑
m=−∞

Jn

(
2ωL A2

c

)
Jm

(
ωL A1

c

)
exp[−in2π f2T + im2π f1T]

+ c.c. (11)

and

ENL:4(t) = ENL:4(t) exp(−iωLt)
∞∑
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∞∑
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Jn

(
2ωL A1

c

)
Jm

(
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c

)
exp[−in2π f1T + im2π f2T]

+ c.c. (12)

Thus these terms containf1 + f2 components.ENL:1(t) and
ENL:2(t) can be expanded using the Bessel function in the
same manner.

The light intensity measured in the collinear interferomet-
ric experiments, as a function of the delay time of the refer-
ence pulse,I (τref), is expressed as

I (τref)

= 〈|Eref(t − τref)+ E′1(t)+ E′2(t)+ ENL(t)|2
〉
. (13)

Here,

Eref(t − τref)

≡ Eref(t − τref) exp[−iωL(t − τref)] + c.c. (14)

tained as follows:

I1(τref) = J1

(
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c

) 〈
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′∗
1 (t)

〉
· exp(iωLτref) sin(2π f1T)+ c.c., (17)

I2(τref) = J1

(
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c

) 〈
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′∗
2 (t)

〉
· exp(iωLτref) sin(2π f2T)+ c.c. (18)

and

I1+2(τref) =

−
{

J1

(
2ωL A2

c

)
J1

(
ωL A1

c

)
〈Eref(t − τref)E

∗
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(
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c

)
J1

(
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c

)
〈Eref(t − τref)E

∗
NL:4(t)〉

}
· exp(iωLτref) cos[2π( f1+ f2)T] + c.c.

+ I0. (19)

Here, small contributions of nonlinear terms toI1(τref) and
I2(τref) are neglected, andI0 in eq. (19) represents the terms
which are constant as a function ofτref. Thus it has been
shown that by detecting thef1 + f2 component of the cross-
correlation interferogram between the reference beam and the

is the electric field of the reference pulse, where

E′1(t) ≡ E ′1(t) exp(−iωLt)

· exp

[
−i
ωL A1

c
sin(2π f1t)

]
+ c.c. (15)

and

E′2(t) ≡ E ′2(t) exp(−iωLt)

· exp

[
−i
ωL A2

c
sin(2π f2t)

]
+ c.c. (16)

are the electric fields of the excitation pulses transmitted
through the sample, and〈 〉 denotes the time average. By
substituting eqs. (6)–(12), and (14)–(16) into eq. (13), the ex-
pressions for thef1, f2, and f1 + f2 components ofI (τref),
which are denoted asI1(τref), I2(τref), and I1+2(τref), are ob-
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500 pJ, respectively. Under this low pulse energy, white-light
continuum generation due to tight focusing did not occur.
The pulse-front distortion by tight focusing can be a prob-
lem.23,24) However, we verified that the spatial pattern of the
interference between the reference pulse and the first pulse
or the second pulse is constant within the whole area of the
spot size. Thus, we can neglect the effect of pulse-front dis-
tortion by strong focusing in the present experiments. The
sample was a jet of an ethylene glycol solution of an IR dye
HITCI (1,1′,3,3,3′,3′-hexamethylindotricarbocyanine iodide).
The thickness of the sample was about 200µm and its ab-
sorbance was about 0.3 at 790 nm. The beam transmitted
through the sample was overlapped with the reference beam.
The output light intensity from the interferometer was mea-
sured by a photomultiplier tube.

In order to apply the double-phase modulation technique,
the path lengths of the two excitation beams were modulated
by piezo-electric actuators atf1 = 3.4 kHz and f2 = 1.9 kHz,
respectively. The sum frequency electric signal atf1 + f2 =
5.3 kHz was synthesized using an analog multiplier circuit
and the f1 + f2 component in the transmitted light intensity,
which included only the photon echo signal, was detected us-
ing a lock-in amplifier. In order to detect only theENL:3(t)
component, as described in the previous section, the modula-
tion depth of the interference was monitored and the ampli-
tude of modulation was determined so thatJ1(ωL A1/c) be-
came maximum.

4. Experimental Results

Figure 5 shows interferograms obtained by this system with
several delaysτ . Using three lock-in amplifiers, the three
components,f1, f2, and f1 + f2, of the interference sig-
nal were measured simultaneously. The cross-correlation be-
tween the first excitation pulse and the reference pulse was
obtained in thef1 component, the cross-correlation between
the second excitation pulse and the reference pulse was ob-
tained in thef2 component, and the cross-correlation between
the photon echo pulse and the reference pulse was obtained
in the f1 + f2 component. These interferograms indicate

transmitted beam, the cross-correlation of the reference pulse
with only the photon echo signal can be extracted, and that
the f1 and f2 components exhibit the cross-correlation of the
first and second excitation pulses, respectively, with the refer-
ence pulse. By detecting these three components using three
lock-in amplifiers, the pulse shapes of the first and second ex-
citation pulses and the photon echo signal can be measured si-
multaneously by maintaining information on the exact timing
among these pulses. Furthermore, we can control the relative
magnitude of these components by adjusting the amplitudes
of the phase modulations,A1 and A2. As shown in Fig. 3,
J1(x) has the first maximum and the first zero atx = 1.84 and
x = 3.83, respectively. ThusJ1(2ωL A1/c) becomes negligi-
ble whenJ1(ωL A1/c) is set close to the maximum value by
adjusting the modulation amplitudeA1. In this case, only the
contribution ofENL:3(t) to the photon echo signal (2k2 − k1

signal in the noncollinear geometry) is selectively detected.

3. Experimental Setup

The schematic diagram of the experimental setup is shown
in Fig. 4. This system is based on the white-light Michel-
son interferometer.16,18–20)In order to observe photon echoes
by two-pulse excitation, we split the arm with the sample on
it into two arms.21) The light source was a Ti:sapphire laser
built by our laboratry. The design of the cavity was in X-
configuration reported by Asakiet al.22) The pulse width, the
wavelength and the repetition rate of the laser output were
19 fs, 790 nm, and 100 MHz, respectively. The light source
and the interferometer were placed on a vibration-isolated op-
tical table. The output of the laser was split into three parts:
the reference pulse and a pair of excitation pulses. The delay
time of the reference pulse with respect to the second exci-
tation pulse,τref, and the delay time of the second excitation
pulse with respect to the first excitation pulse,τ , were con-
trolled by translation stages driven by stepping motors. The
pair of excitation pulses were combined collinearly and fo-
cused on the sample by af = 10 mm convex lens. Since
the beam size before focusing was about 5 mm, the spot size
at the focus was estimated to be 2–10µm. The pulse en-
ergy of the first and second excitation pulses were 250 pJ and
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Fig. 3. The first Bessel function.
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Fig. 5. Interferograms measured by this system.τref is the delay time of
the reference pulse to the second pulse.τ is the delay time of the second
pulse to the first pulse.

the waveforms of the first pulse, the second pulse, and the
photon echo pulse, respectively. The dc component in the
f1+ f2 component,I0 in eq. (19), was measured by blocking
the reference arm and subtracted from the measured interfer-
ograms. The time evolution of the amplitude and phase of
photon echoes is clearly observed in these obtained interfero-
grams. Characteristics of the waveforms, such as the ampli-
tude and phase of the two excitation pulses, the time separa-
tion between the two excitation pulses, and the time when the
photon echo pulses appear, were observed in the same scan
simultaneously. We set the delay timeτ so that the phase
relation between the first pulse and the second pulse was in-
phase by observing the dc component of the interferogram, or
the intensity of the interference between the first pulse and the
second pulse. The signal was stable while scanning the delay
time,τref. Each scan took about 5 min. As the delay timeτ in-
creased, the photon echo signal became weaker. We find that
the system dephases on the time scale of 10 fs. We also find
that the peaks of the photon echo waveforms appeared ear-
lier thanτ , and that the waveforms are not symmetric. These
points can be explained by taking into account the fact that

the dephasing of the system takes place faster than or on a
comparable time scale to the delay timeτ and/or the time re-
quired for dephasing due to the inhomogeneous broadening
of the resonance frequency.

However, some chirp was detected during this experiment.
Unfortunately, since we had not calibrate the path length, the
phase change observed here could include some fluctuation
of air or optical components. So we did not analyze the chirp
in this experiment. If we were to calibrate the path length by
observing, for example, an interferogram of a narrow line of
another reference laser, we could get information regrading
the chirp of the photon echo waveform.

5. Discussion

Time-resolved photon echo intensity of a similar sample
has been measured by Pshenichnikovet al.25) It is very infor-
mative to compare the results of this experiment with theirs.
They explained their result using a stochastic model with a
two-component correlation function of the fluctuation of the
transition frequency between the relevant two levels. They set
the correlation function as follows:〈

δω(t ′)δω(t ′′)
〉 = 12

f exp[−3f |t ′ − t ′′|]
+12

s exp[−3s|t ′ − t ′′|]. (20)

Here,δω(t) is the fluctuation in the transition energy, the first
term describes the fast component of the fluctuation, and the
second term describes the slow component.1f and1s are the
root mean squares of the amplitudes of fluctuation and3f and
3s are the inverses of the correlation times of fluctuation. In
this case, the fast fluctuation is caused by collisions between
molecules in solution. Considering Markov limit (3f t À 1)
this corresponds to homogeneous broadening. The slow fluc-
tuation is caused by frequency difference between sites in so-
lution. In static limit (3st ¿ 1) this corresponds to inho-
mogeneous broadening. However, in this system, consisting
of dye molecules in solution at room temperature, both the
limitations cannot be applied, therefore the two-component
correlation function model is appropriate.

Under this model the photon echo signal amplitude
S2PE(t, τ ), which corresponds toENL:3(t), can be calculated
using the rotating wave approximation as follows:1)

S2PE(t, τ ) ∝
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 exp
[−i1ω(t3+ t1)

]
· exp[−g(t3)− g(t1)− g(t1+ t2+ t3)

− g(t2)+ g(t1+ t2)+ g(t2+ t3)]
· E(t − t3)E

∗(t + τ − t3− t2)E(t − t3 − t2 − t1)

+
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 exp
[−i1ω(t3− t1)

]
· exp[−g(t3)− g(t1)+ g(t1+ t2+ t3)

+ g(t2)− g(t1+ t2)− g(t2+ t3)]
· E(t − t3)E(t − t3− t2)E

∗(t + τ − t3 − t2 − t1). (21)

Here,E(t) is the envelope of the incident light field defined
as

E1(t) = E(t + τ ) exp[−iωL(t + τ )], (22)

E2(t) = E(t) exp[−iωLt]. (23)
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and the accumulated photon echoes,26) which are generated
due to the transmission change of incident light due to the
population grating in that frequency domain, have consider-
able intensity.

Now, we will discuss the effect of accumulated photon
echoes in greater detail. Pairs of excitation pulses determine a
population grating, which is accumulated during the lifetime
of the population difference between the ground and excited
states. HITCI molecules are expected to have a considerable
triplet yield, and the triplet lifetime is typically of the order
of 1µs, which becomes the effective lifetime of the popula-
tion difference. After the accumulation of the population grat-
ing takes place, photon echoes are generated by diffraction of
the incident light from this grating, in the conventional non-
collinear geometry, or by transmission modulation through it,
in the present collinear geometry. The pulse sequence in this
situation is schematically shown in Fig. 7. Here,T represents
the effective accumulation duration.

The amplitude of the accumulated photon echo signal,
SAPE(t, T, τ ), can be described in the following equation:

1st 2nd

–T–τ

3rd

–T 0

echo

1st 2nd

–τ 0

echo

(a)

(b)

t

t

Fig. 7. Pulse sequence of (a) two-pulse photon echo and of (b) accumu-
lated photon echo.
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Fig. 6. Positions of the maxima of the cross-correlation between the pho-
ton echo and the reference field. The dots show the experimental results.
The dashed curve shows the results of calculation using the stochastic
modulation model. The solid curve shows the results of calculation in-
cluding the accumulation effect of the population grating.

τ is the delay time between the first pulse and the second pulse
andg(t) is the line broadening function defined by

g(t) =
∫ t

0
dt′′

∫ t ′′

0
dt′
〈
δω(t ′′)δω(t ′)

〉
= 12

f

32
f

(exp[−3f t] +3f t − 1)

+ 1
2
s

32
s
(exp[−3st] +3st − 1) . (24)

1ω is the detuning of the center frequency of the incident
pulse from the resonance frequency. When the incident pulses
are very short and can be assumed as delta functions, eq. (21)
is reduced to

S2PE(t, τ ) ∝ exp
[−2g(t)− 2g(τ )+ g(t + τ )]

· exp [−i1ω(t − τ )] . (25)

We assumed here that the population relaxation time,T1, is
much longer than the time scale of the other dynamics. We
calculated the time when the peak of photon echo appears in
the two-component correlation function model with the same
parameters as used in the study by Pshenichnikovet al. Used
parameters are as follows:1f = 55× 1012 rad/s,3f = 110×
1012 rad/s,1s = 110× 1012 rad/s, and3s < 0.5× 1012 rad/s.
Since3−1

s is much longer than the observation time, which
is less than 100 fs, we can reduce the expression forg(t) as
follows:

g(t) = 12
f

32
f

(
exp[−3f t] +3f t − 1

)+ 1

2
12

st2. (26)

The pulses were characterized by intensity autocorrelation,
which was measured by replacing the sample with a 100-µm-
thick potassium dihydrogen phosphate (KDP) crystal, and de-
tecting the second harmonic light generated by the crystal
while scanning the delay timeτ . The measured autocorrela-
tion could be simulated very well when the pulse shape of the
incident pulses was assumed to be Gaussian with a full-width
at half maximum pulse width of 19 fs. The detuning value
was estimated from the absorption spectrum of the sample as
1ω = 20 THz.

The plot of the peak shift of the cross-correlation between
the photon echo pulse and the reference pulse as a function
of τ is shown in Fig. 6. The dots indicate the experimental
results and the dashed curve indicates the results of the cal-
culation. The experimental data shows a trend similar to the
results of calculation as a function ofτ , but the peaks of pho-
ton echoes in the experiment always appear earlier than for
the results of the calculation. Fitting the experimental results
by scanning the model parameters did not give good agree-
ment in the region where the delay timeτ was small.

This disagreement can be explained by taking into account
the effect of population accumulation or high saturation by
high peak power pulse. Here, we explain the disagreement
due to the effect of accumulation. In our experiment, the
speed of liquid flow in the sample jet was about 1 m/s, the spot
size of the beam was on the order of 1µm, and the repetition
rate of the excitation pulses was in 100 MHz. These numbers
result in 100 pairs of pulses exciting the same molecule while
the molecule flows through the excitation beam spot. There-
fore, an excited-state population is accumulated in the system
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Here, the lifetime of the population difference is assumed to
be much longer than the observation time, and the effects
of the decay of population difference are neglected in this
equation. In the present condition, the accumulation time
is much longer than the correlation time of the slow compo-
nent, and spectral diffusion due to the slow component occurs
completely during the accumulation. Therefore, the periodic
structure in the population grating in the frequency domain
obtained by pairs of excitation pulses is almost completely
smeared out when the third pulse is incident on the sample.
Thus the photon echo peak appears at almost the same time
as that of the second pulse, and this is independent of the de-
lay timeτ . When each incident pulse is assumed to be a delta
function, the accumulated photon echo signal amplitude is re-
duced to

SAPE(t, T, τ ) ∝ exp[−g(t)− g(τ )+ g(τ + t + T)

+ g(T)− g(τ + T)− g(T + t)]
· exp [−i1ω(t − τ )] . (28)

Since3s is much smaller than3f andT is much longer than
1/3s, the following approximate relationships are obtained:

g(T) ∼= g(τ + T) ∼= g(T + τ ) ∼= g(τ + t + T) ∼= 12
s

3s
T.

(29)

Using these relationships, eq. (28) is simplified to

SAPE(t, T, τ ) ∝ exp
[−g(t)− g(τ )

]
exp [−i1ω(t − τ )] .

(30)

We plotted eqs. (25) and (30) at several value ofτ as a func-
tion of t in Fig. 8. Here, the same values of parameters as
are mentioned in the preceding part are used. We can clearly
observe that the peaks of accumulated photon echo signals
appear almost at the same time as that of the second pulse,
and that they are independent ofτ . On the other hand, the
two-pulse photon echo signal appears around the timet = τ .

By taking into account the effects of the accumulated pho-
ton echo, the positions of the photon echo maxima were cal-
culated again. The results are shown in Fig. 6 by a solid curve.
The ratio of the accumulated photon echo amplitude to two-
pulse photon echo amplitude was set to 1.5 in the calculation.
The calculation shows excellent agreement with the experi-
mental results. The agreement can be explained as follows.
The accumulated photon echoes are emitted faster than the
two-pulse photon echoes due to two reasons. 1) Since spectral
diffusion takes place much faster than the population accumu-
lation as mentioned above, and the population grating in the
frequency domain made by the excitation pulse pair is com-

SAPE(t, T, τ ) ∝
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 exp
[−i1ω(t3+ t1)

]
· exp[−g(t3)− g(t1)− g(t1+ t2+ t3)− g(t2)+ g(t1+ t2)+ g(t2+ t3)]
· E(t − t3)E

∗(t + T + τ − t3− t2)E(t + T − t3 − t2− t1)

+
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 exp
[−i1ω(t3− t1)

]
· exp[−g(t3)− g(t1)+ g(t1+ t2+ t3)+ g(t2)− g(t1+ t2)− g(t2+ t3)]
· E(t − t3)E(t + T − t3− t2)E

∗(t + T + τ − t3 − t2− t1). (27)
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Fig. 8. Amplitudes of (a) two-pulse photon echo signal,S2PE(t, τ ), and (b)
accumulated photon echo signals,SAPE(t, T, τ ), when the incident pulses
are assumed to be delta functions.

pletely smeared out when the third pulse is incident on the
sample, the accumulated echo has no delay even for a large
τ . Two-pulse photon echo, on the other hand, has a delay of
τ , which is the inverse of the period of frequency grating. 2)
Whenτ is small, the dynamics of photon echo generation is
determined by the dynamics of the building of the population
difference. Two-pulse photon echo signal is emitted by the
population built by the two excitation pulses themselves, and
the time required for building the population is the duration
of the excitation pulses. On the other hand, accumulated pho-
ton echo signal is emitted by the population grating which has
already been built by a hundred pairs of pulses, and no time
is required for the building of the population grating. That is
the reason why the accumulated photon echo is emitted faster
than the two-pulse photon echo even with smallτ .

The waveforms of the photon echo signals were also calcu-
lated using the same parameter set, and compared with those
measured in the experiment, as shown in Fig 9. The solid
curves indicate the experimentally obtained cross-correlation
between photon echo signal and the reference pulse, and the
dashed curves indicate the envelopes of the simulated cross-
correlation of the calculated photon echo signal and the refer-
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ence pulse. Both the shape and the magnitude of photon echo
waveforms agree well with the experimental results. This
shows the reliability of the model used in the present anal-
ysis.

6. Summary

To summarize, we have developed a collinear interferomet-
ric method for the measurement of femtosecond waveforms
of photon echoes. Using the double-phase modulation tech-
nique, we can detect only the cross-correlation between the
photon echo and the reference pulse, even by collinear geom-
etry. We applied the method to a photon echo experiment with
a dye solution. We were able to measure, simultaneously, the
phase and the amplitude of the photon echoes, those of the
excitation pulses, the time separation between the excitation
pulses, and the time when the peak of the photon echo ap-
pears using this technique. The results were explained by a
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Fig. 9. Interferogram between the photon echo signal and the reference
pulse measured by this system. In the figure,τref is the delay time of the
reference pulse to the second pulse, andτ is the delay time of the second
pulse to the first pulse. The dashed curves indicate the results of the cal-
culation based on the stochastic modulation model with the accumulation
effect of the population grating, as discussed in the text.

stochastic modulation model taking into account the effect of
accumulation of population grating. This method can be ap-
plied to other kinds of nonlinear spectroscopy and is useful
for the study of ultrafast dynamics of various materials.
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