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Enhancement of the effective third-order optical nonlinearity of a one-dimensional photonic crystal structure with a nonlinear
defect layer is discussed by defining the figure of merit of the system. The nonlinear optical material is doped in the central
defect layer of the photonic crystal structure, and it is assumed that the concentration of the nonlinear material can be
controlled. It was found that the achievable figure of merit is proportional to the square of the field enhancement in the defect
layer. The relationship between the figure of merit and the response time of the photonic-crystal system was obtained, and
shows a trade-off between fast response and large nonlinearity. [DOI: 10.1143/JJAP.41.1349]

KEYWORDS: photonic crystal, nonlinear optics, third order, figure of merit, response time

1. Introduction

The interaction between matter and radiation can be
modified significantly by using photonic crystal (PC)
structures. In particular the nonlinear interaction can be
greatly enhanced by the use of defect modes in a one-
dimensional (1D) dielectric PC structure.1–7) In this case,
modes of light are modified by the PC structure, and the
mode density is enhanced at a certain spectral range, leading
to the enhancement of the interaction between matter and
radiation. In our previous paper we analyzed the third-order
nonlinearity of a 1D PC structure with a defect containing
nonlinear optical material,1) where general expressions for
intensity-dependent transmittance and four-wave mixing
intensity were derived and optical bistability was also
predicted in the PC system.

In this report, we first define the figure of merit of the
effective third-order nonlinearity in the PC system based on
the previous model.1) The figure of merit of third-order
optical nonlinearity is often used to characterize the
efficiency of nonlinear optical materials, which is defined
by the third-order susceptibility divided by the absorption
coefficient. Since the nonlinearity in our model is purely
absorptive, the figure of merit enables us to determine the
effectiveness of using the PC structure, and to discuss the
dependence of the nonlinearity enhancement on various
parameters. Next, we derive the temporal response of the PC
system. It is shown that there is a trade-off between the
effective nonlinearity and the response time.

2. Model

We assume the structure of the 1D PC with a defect layer
to be that depicted in Fig. 1.1) The structure is symmetrical,
and the defect layer is sandwiched between two identical
stacks of layers of high and low refractive index on a
substrate. Each stack is composed of N layers of low
refractive index, A layers, and N layers of high refractive
index, B layers. The refractive indices of the A and B layers
are denoted nA and nB, respectively. The optical thicknesses
of the A and B layers are �=4, where � is the incident light
wavelength. The optical thickness of the defect layer is �=2.
Nonlinear optical materials, such as semiconductor quantum
dots and dyes, are assumed to be doped in the defect layer,
and the material is assumed to have a purely absorptive

nonlinearity. The refractive index and the extinction
coefficient of the defect layer are denoted nX and �,
respectively. The nonlinearity is introduced by the absorp-
tion saturation

� ¼
�0

1þ I=IS
; ð1Þ

or

� ¼ �0ð1� I=ISÞ; ð2Þ

to the lowest order of the light intensity. Here, �0, I, and IS
are the unsaturated extinction coefficient, the light intensity
in the defect layer, and the saturation intensity. The
nonlinearity assumed here is third order.

We can briefly summarize some important results reported
in the previous paper as follows.1) We assume here that the
refractive index of the substrate and that of the defect layer
are equal, and

nB

nA

� �N

� 1: ð3Þ

This structure has a narrow transmission peak at �. The
transmittance, T , and the spatially averaged intensity
enhancement factor, G, at � are expressed as

T ¼ 4 2þ
��

nX

nB

nA

� �2N
" #�2

; ð4Þ
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Fig. 1. Model structure of the one-dimensional photonic crystal with a

defect layer at the center. S: substrate, A: low-index layer, B: high-index

layer, X: defect layer.
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G ¼
T

2

nB

nA

� �2N

: ð5Þ

The effective nonlinearity of the PC structure was
compared with that of a naked nonlinear optical layer
without the PC structure. As a measure of the effective
magnitude of the nonlinearity, the following quantity was
used:

� �
dT

dIin
IS: ð6Þ

Here, Iin is the incident light intensity. This quantity is
proportional to the effective third-order nonlinearity of the
device normalized to the figure of merit of the doped
nonlinear material. For the PC structure and a naked film,
they can be expressed as a function of the linear
transmittance as

�PC ¼
3

2

nB

nA

� �2N

T2 1�
ffiffiffiffi
T

p� �
; ð7Þ

�naked ¼ Tð1� TÞ: ð8Þ

The derivation of eq. (7) is briefly described in the
Appendix. These expressions show that the effective
nonlinearity is optimized at a certain value of transmittance,
or at a certain value of doping concentration of the nonlinear
material. The effective nonlinearity of the PC structure has a
maximum value of �PC ¼ 0:12ðnB=nAÞ2N at T ¼ 0:64. An
important characteristic of the doped nonlinear optical
system is that the doping concentration can be changed
easily, and optimized to obtain the optimum effective
nonlinearity, which is in sharp contrast to the case of bulk
nonlinear materials. Using eq. (4), the optimum doping
concentration is obtained to be the concentration corre-
sponding to the extinction coefficient of

� ¼
nX

2�

nA

nB

� �2N

: ð9Þ

For a large value of N, this can be so small that negligible
absorption is obtained in the system without the PC
structure.

Comparison of the effective nonlinearity of the PC system
with that of the naked film at a fixed doping concentration is
not meaningful since the doping level can be optimized
independently in each structure. Instead, comparison should
be made for the optimized doping concentration in each
structure, or at a fixed value of linear transmittance.1) The
enhancement of the effective nonlinearity over that of a
naked film is 0:53ðnB=nAÞ2N at the transmittance value
mentioned above. Another approach for the comparison is to
define a figure of merit as a measure of the magnitude of the
effective nonlinearity.

3. Figure of Merit

Now, we derive the figure of merit of the effective third-
order nonlinearity of the 1D PC structure. The figure of merit
of third-order nonlinear optical materials is usually defined
by

F �
�ð3Þ

�
; ð10Þ

where �ð3Þ and � are the third-order nonlinear susceptibility
and the linear absorption coefficient of the system,
respectively.

The susceptibility of the system can be expressed as a
function of the light field amplitude as8)

� ¼ �ð1Þ þ
3

4
�ð3ÞjEj2; ð11Þ

where �ð1Þ is the linear susceptibility, and the light field
amplitude E is related to the light intensity I by

I ¼
1

2
	0cnjEj2: ð12Þ

Here, 	0 is the dielectric constant of the vacuum, c is the
speed of light, and n is the refractive index of the medium.
The imaginary part of the susceptibility of the nonlinear
medium, which is proportional to the extinction coefficient,
is expressed as

=� ¼ =�ð1Þ 1�
I

IS

� �
; ð13Þ

in the same manner as in eq. (2). Using eqs. (11–13), we can
obtain the relationship between the imaginary part of �ð3Þ

and the saturation intensity as

=�ð3Þ ¼ �
2	0cn

3

1

IS
=�ð1Þ: ð14Þ

The third-order susceptibility only has an imaginary part in
the present system because the nonlinearity is assumed to be
purely absorptive. Since =�ð1Þ is related to the linear
absorption coefficient by

� ¼
2�

n�
=�ð1Þ; ð15Þ

we obtain the figure of merit expressed in terms of the
saturation intensity as

=�ð3Þ

�
¼ �

	0cn
2�

3�
�
1

IS
: ð16Þ

This expression shows that IS is a measure of the figure of
merit of the doped nonlinear material, or, in other words,
that of the naked film. The negative sign here indicates that
the absorption is decreased when the light intensity is
increased. The intensity dependent absorption coefficient is
expressed as

�ðIÞ ¼
�

1þ I=IS
: ð17Þ

Using this and eq. (16), we obtain

d�

dI
¼

3�

	0cn2�
=�ð3Þ: ð18Þ

Now we proceed to the figure of merit of the effective
nonlinearity of the PC structure. We introduce here the
effective absorption coefficient of the device with the PC
structure, �eff , by

T ¼ expð��effdÞ: ð19Þ

Here, d is the thickness of the nonlinear device. Using a
relation equivalent to eq. (18), the imaginary part of the
effective third-order susceptibility �

ð3Þ
eff is introduced by
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d�eff

dIin
¼

3�

	0cn2�
=�ð3Þ

eff : ð20Þ

By differentiating eq. (19) by the incident light intensity, we
obtain the expression of the effective nonlinear susceptibility
in terms of � as defined by eq. (6):

=�ð3Þ
eff ¼ �

	0cn
2�

3�dIST
��: ð21Þ

Using eq. (7), the effective nonlinear susceptibility for the
PC structure is obtained as

=�ð3Þ
eff ¼ �

	0cn
2�

2�dIS

nB

nA

� �2N

Tð1�
ffiffiffiffi
T

p
Þ: ð22Þ

In order to compare the figure of merit of the PC structure
with that of the naked film, the limit of T ! 1, or small
absorption, is taken, which leads to the expression of the
effective figure of merit as

=�ð3Þ
eff

�eff

¼ �
	0cn

2�

4�

nB

nA

� �2N

�
1

IS
: ð23Þ

By comparing eqs. (16) and (23), the enhancement of the
effective figure of merit of the PC structure over that of the
naked film is obtained as

F ¼
3

4

nB

nA

� �2N

: ð24Þ

Since the optical field is enhanced by the order of ðnB=nAÞN
in the defect layer,1) the factor above is proportional to the
square of the field enhancement. This can be explained as
follows. The nonlinear optical process described by the
third-order nonlinearity is a four-wave mixing process,
where three incident waves are mixed to generate the fourth
wave. The radiation and the matter interact with each other
four times in this process, leading to the enhancement of the
interaction strength which is proportional to the fourth
power of the field enhancement. On the other hand, they
interact two times in the linear absorption process, leading to
the enhancement of the linear absorption which is propor-
tional to the square of the field enhancement, as shown in eq.
(4). Thus, the figure of merit of the third-order nonlinearity,
which is the magnitude of the third-order susceptibility
divided by the linear absorbance, is enhanced by a factor
proportional to the square of the field enhancement.

4. Temporal Response

Now we will discuss the factors limiting the enhancement.
Equation (24) shows that the figure of merit can be enhanced
as much as is desired by choosing a sufficiently large number
of layers. In reality, however, any loss of light by intrinsic
absorption of the host medium or by randomness can limit
the enhancement. From eq. (5), it can be shown that for a
given � the light intensity enhancement factor has a
maximum value of

Gmax ¼
nX

4��
ð25Þ

at

N ¼
ln

2nX

��

2 ln
nB

nA

: ð26Þ

This shows that any loss of light in the defect layer can limit
the maximum achievable field enhancement.

The number of layers in the stack can be limited by the
manufacturing process of the stack. It can also be effectively
limited by fluctuation in layer thickness. However, stacks
with more than one hundred layers of good optical quality
can be manufactured using commercial systems. When
assuming typical values of the refractive indices of SiO2 for
A layers (nA ¼ 1:46) and TiO2 for B layers (nB ¼ 2:35), we
obtain ðnB=nAÞ2N ¼ 2
 1010 with N ¼ 50. A more realistic
limit of the enhancement comes from another factor, the
response time of the PC structure.

The finite width of the transmission peak necessarily leads
to a finite response time of the PC structure. We derive the
time response of the PC structure as follows. The present PC
structure with a defect layer at the center can be regarded as
a Fabry–Perot interferometer, where the transmittance of the
mirrors is

T ¼ 4
nA

nB

� �2N

ð27Þ

in the limit of ðnB=nAÞ2N � 1. The transmission coefficient
of the Fabry-Perot interferometer is9)

te ¼
T

1� ð1� T Þ expði
Þ
: ð28Þ

Here, 
 is the detuning angle:


 ¼ 2�
�� �0

�0
; ð29Þ

with �0 being the center frequency. When T � 1, this
expression can be approximated by

te ¼
1

1� i
=T
ð30Þ

near the transmission peak. Since the transmittance is

T ¼ jtej2 ¼
1

1þ 
2=T 2
; ð31Þ

the transmission peak has a Lorentzian shape and the full-
width at half maximum of the peak is

�� ¼
T

�
�0; ð32Þ

or

��

�0
¼

4

�

nA

nB

� �2N

: ð33Þ

It is of interest that this factor is inversely proportional to the
enhancement factor of the figure of merit of the PC structure
as

F ¼
3

�
�
�0

��
: ð34Þ

Since the incident light always has a finite spectrum width,
�� should not be narrower than that spectrum width for
effective use of the light power. The expression above shows
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that the figure of merit is limited by the spectrum purity of
the light used in the system.

This relation is of greater importance when the time
response of the system is fully considered. The finite spectral
width of the transmission peak limits the response time of
the PC structure,3) even if the material response is faster. In
other words, in order to obtain a certain response time, the
system should have a sufficiently broad transmission peak.
The waveform of the transmitted light field of the PC system
to a delta function input can be derived by the Fourier
transformation of eq. (30) as

EoutðtÞ ¼
Z 1

�1
teð�Þe�i2��td�

¼ T �0e
�T �0te�i2��0t ðt > 0Þ: ð35Þ

This shows that the output field has a center frequency of �0,
and decays exponentially with a time constant of 1=T �0.
Exponential decay of the transmitted field has been observed
previously using an interferometric technique.3,10) When the
response time of the system, 
, is defined by the decay time
of the light power, it becomes


 ¼
1

2T �0
¼

1

2���
¼

1

8�0

nB

nA

� �2N

: ð36Þ

By combining eqs. (24) and (36), the enhancement factor
of the figure of merit of the PC structure is related to its
response time as

F ¼ 6�0
: ð37Þ

This equation shows that the enhancement of the figure of
merit of the third-order optical nonlinearity achievable by
using the PC structure is inherently limited by the response
time of the system. When one requires a faster response of
the system, one obtains smaller nonlinearity. It has already
been shown that the magnitude of resonant optical
nonlinearity of bulk materials is also limited by the material
response time in a similar way.11) This comes from the
material resonance. The enhancement discussed in the
present study arises from the modification of the radiation
modes by the PC structure. It is of importance that the two
mechanisms work independently. Thus, one can utilize both
of them to obtain maximum nonlinearity. Optimum
nonlinearity can be obtained by tuning the response time
of the material and that of the radiation modes at the same
time. The resultant effective nonlinearity of the system is
that of the raw material multiplied by the enhancement
factor of the PC structure. On the other hand, the total
response time of the combined system is only limited by the
sum of the material response time and that of the PC
structure.

5. Conclusion

The magnitude of effective third-order optical nonlinear-
ity of a one-dimensional photonic-crystal structure with
doped nonlinear material was discussed by defining the
figure of merit of the system. The figure of merit was found
to be proportional to the square of the field enhancement in
the defect layer. It was also found that the achievable
enhancement factor is inversely proportional to the response
time of the PC structure.
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Appendix

Here, the derivation of eq. (7) is briefly described.1)

Transmittance of the model PC structure used in the present
study can be calculated using the transfer matrix method.9)

For large N such that

ðnB=nAÞN � 1; ðA�1Þ

the transmittance obtained can be approximated as

T ¼
4

2þ
��

nX

nB

nA

 !2N
2
4

3
5

2
:

ðA�2Þ

The local light intensity in the defect layer can be obtained
for large N by applying the same method as a function of
position z as

IðzÞ ¼
4Iin

nB

nA

 !2N

cos2 ð�z=dXÞ

2þ
��

nX

nB

nA

 !2N
2
4

3
5

2

ð�dX=2 < z < dX=2Þ: ðA�3Þ

Here, Iin is the light intensity incident on the PC structure
and dX is the thickness of the defect layer. The extinction
coefficient of the medium in the defect layer is saturated
depending on the position as

�ðzÞ ¼ �0½1� IðzÞ=IS� ðA�4Þ

to the lowest order of the light intensity. The effective
average extinction coefficient of the entire defect layer to the
first order of the incident intensity can be calculated by
taking the average with weight of the local light intensity as

"�� ¼

R dX=2
�dX=2

�ðzÞIðzÞdzR dX=2
�dX=2

IðzÞdz

¼ �0 1�
1

IS
�

3Iin
nB

nA

 !2N

2þ
��0

nX

nB

nA

 !2N
2
4

3
5

2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ðA�5Þ

By substituting � in eq. (A�2) by "��, the incident light
intensity dependence of the transmittance is obtained as

dT

dIin
¼

dT

d "��

d "��

dIin

¼
1

IS

24��

nX

nB

nA

� �4N

2þ
��

nX

nB

nA

� �2N
" #�5

: ðA�6Þ

In the derivation of this expression, �0 and "�� are replaced by
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� since in this case we are studying the weak-field response.
Using the relationship between � and T , eq. (A�2), the
equation above can be expressed in terms of the transmit-
tance as

dT

dIin
¼

3

2

1

IS

nB

nA

� �2N

T2ð1�
ffiffiffiffi
T

p
Þ: ðA�7Þ

Finally, eq. (7) is obtained using the definition of � in eq.
(6).
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