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Short-range interference effect in the diffusion of light in random media

Sakae Kawato,* Toshiaki Hattori, Tadashi Takemori, and Hiroki Nakatsuka
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

~Received 23 January 1998!

We study the interference effect of multiply scattered waves in the diffusive light propagation in random
media. We take porous glass samples of various pore radiia as an example of random media, and measure the
transport mean free pathl * and the diffusion constantD for various light wavelengthsl over a wide range of
the size parametera/l50.05–0.85. A crossover is observed from the Rayleigh scattering region to the
geometrical optics region. The transport velocityvE53D/ l * determined from the data is found to decrease
monotonically witha/l, falling well below the light velocity in glass. We also present a framework of
theoretical analysis of wave energy diffusion in a most general setting, taking explicit account of the broad-
ening of light dispersion and paying attention to the requirement of Ward-Takahashi identity. We calculate
diffusion parameters as functions ofa/l for a model of spatially fluctuating dielectric constant, using two types
of self-consistent scattering approximation to the self-energy and the scattering kernel. Comparison of the
experiment against the calculation with and without interference terms of multiple scattering reveals the
importance of short-range interference effects in the diffusive propagation of light.@S0163-1829~98!07133-1#
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I. INTRODUCTION

Propagation of classical waves in random media has b
a subject of investigation for quite some time.1–3 It has long
been observed that, in a wide range of cases, the propag
of energy over a long distance and over a long time
diffusive.4 Examples include light propagation in the atm
spheric cloud4 and transmission of radio waves through
cloud of interstellar objects in space.5 Electronic conduction
through a resistor may also be put in the same context if
assumes a noninteracting Fermi fluid and solves the Sc¨-
dinger equation for the electronic wave function in a rand
potential.6 In all such cases, long-range propagation is w
described by a diffusion equation with a definite diffusi
constant. One might then be tempted to construct a pictur
energy diffusion in terms of the diffusion of particles whic
travel at a certain speed to undergo a series of collisions
pointlike scattering centers. A standard theory of such dif
sion involves quantities such as transport mean free patl *
and transport velocityvE, which are related to the diffusion
constantD by D5 1

3 vEl * .7,8 However, such a theory is s
firmly based on the picture of diffusing classical particles
does not readily yield to an interpretation in terms of t
underlying wave propagation. The scattering cross sectio
individual scatterers may be determined in the wave pict
to obtain l * , and the wave propagation speedvE may be
determined from the energy propagation speed in the
space. But once these parameters are determined, one c
over to the particle picture and assumes that the wave na
is not manifest over a spatial distance beyondl * .

However, the wave nature reappears beyond distan
over l * if the scattering is strong enough to satisfy the Iof
Regel criterion9 l * /l&1/(2p), wherel is the wavelength of
the propagating wave. Then the interference between m
ply scattered waves is no longer negligible over long d
tances, and a linear wave can localize and cease to prop
diffusively.10 This so-called Anderson localization was fo
mulated for the Schro¨dinger equation for an electron in
PRB 580163-1829/98/58~10!/6180~14!/$15.00
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random potential. However, the mathematical framework
general enough to be applicable to any form of linear wa
equation, and wave localization has now been predicted f
wide range of systems from electromagnetic waves in a r
dom dielectric medium11–13to sound waves in a nonuniform
material.14–16 Despite numerous attempts to realize localiz
tion of a classical wave, a conclusive demonstration
proved difficult. However, the observation of a precursor
fect in the form of enhanced backscattering of light fro
disordered media17–19 gave a clear demonstration of the e
istence of interference effects over long spatial distanc
Investigation into the long-range interference effects h
been intensively pursued ever since,2,3,20,21and an observa-
tion of a strong evidence of localization of light in GaA
powder was reported quite recently.22

Such developments, on the other hand, have given a
newed impetus also to the investigation into the nature
diffusive propagation of classical waves, especially to
effort to construct a full description of energy diffusion
terms of wave propagation. The diffusive behavior of ene
propagation is a general phenomenon that is observed
wide variety of random media. The scatterers may be p
ticles of a finite size as in the case of polystyrene sphe
suspended in water.23 Porous glass, on the other hand, is
block of glass permeated by a random network of fine po
One would have achieved a good understanding of the p
nomenon of wave diffusion if one could calculate diffusio
parameters such asl * , D, andvE from the knowledge of the
microscopic structure of the random medium. However
has been recognized that the definition of such paramete
the wave picture is far from trivial.3,20,24For example, it has
been pointed out that in the case of light scattering by die
tric spheres of a finite size, the multiple scattering in a
around each individual sphere results in a dwell time wh
slows down the propagation speedvE considerably.24–27This
was put forward as a possible explanation of the experim
tal results that the velocityvE determined from the measure
ment ofD and l * very often came out smaller than the lig
6180 © 1998 The American Physical Society



ric
r-

re

b
it
th

in
e

as
is
is
o

lo
y
io

el
a
e
ot
a

dis
f
re

f a
th
c
ile
u
t
d

if-
dia
er
tic
in

-
ca
a

m
th
.

g
e
an

m

a
the

ea-
.5

mal

sed
and
the
s in
the
,
re-

s:
in,

ol

e

g
for

res
total
ved

is

ce

ath

ing

ined
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velocity either in the host material or inside the dielect
scatterer.25 This fact indicates the importance of the interfe
ence effect of multiple scattering even in the diffusive
gime well away from the Ioffe-Regel criterion.

So far, the theory of multiple light scattering is esta
lished only in the weak scattering limit and in the dilute lim
of scatterer concentration. A commonly used treatment in
literature is the independent scattering approximation~ISA!,
which takes into account the wave interference in obtain
the scattering amplitude of individual scatterers but oth
wise treats the propagation of light as the diffusion of cl
sical particles.3 In an ISA treatment, shell approximation
often implicitly used, where a definite dispersion relation
assumed in the material. This enables one to define with
ambiguity such quantities as phase velocity and group ve
ity. Such a treatment is valid when the scatterer densit
low, and gives indeed a good account of the energy diffus
under appropriate circumstances.24–26However, the diffusive
behavior is not confined to such limiting cases but is wid
observed even in cases of high scatterer concentration
large scattering amplitude, as long as the scattering m
free pathl is longer thanl. Interference then takes place n
only around individual scatterers but between different sc
terers as well. For a fixed frequency, the wave vector is
tributed over a width;2p/ l , so that there is a broadening o
the dispersion relation. If the broadening cannot be igno
compared to 2p/l, the definition of such quantities asl *
andvE is no longer straightforward. One is then in need o
consistent framework of description which goes beyond
shell approximation or the ISA, and which takes explicit a
count of the interference effect of multiple scattering. Wh
wave interference around individual scattering centers res
in a reduction ofvE in the framework of ISA, a full treatmen
of wave interference between different scatterers in a broa
framework should affect all diffusion parametersD, l * , and
vE.

Our aim is to establish a general description of light d
fusion that is applicable to a wide variety of random me
by taking into account the wave nature of light. In this pap
we address the problem on both experimental and theore
fronts. Experimentally, we investigated light propagation
porous glass and measured transport mean free pathl * , dif-
fusion constantD, and transport velocityvE over a wide
continuous range of the size parametera/l with a being the
radius of the pores andl being the wavelength of the inci
dent light in vacuum. The result is analyzed in a theoreti
framework that is general enough to encompass a wide v
ety of situations where light diffusion is observed. We co
pare model calculations with the experiment to elucidate
interference effect of multiple scattering in wave diffusion

II. EXPERIMENTAL STUDY
OF MULTIPLE SCATTERING
OF LIGHT IN POROUS GLASS

We measured the transport mean free pathl * and the
diffusion constantD of light in porous glass by measurin
the transmission spectra and the temporal intensity profil
light pulses transmitted through the sample plates. The tr
port velocityvE was obtained fromD and l * using the rela-
tion D5vEl * /3.
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In the experiment of multiple scattering of light in rando
media, the key features required of the target sample are~1!
well-characterized spatial structure,~2! high contrast of re-
fractive index between the host and the scatterers, and~3!
low light absorption. Commercially available porous silic
glass provides an optimal choice for this purpose, since
pore radius is controlled to an accuracy of610% about its
mean value, the volume fraction of the pores can be m
sured with precision, the contrast in refractive index is 1
for glass against 1.0 for air/vacuum, and glass has mini
absorption in the visible range ofl.28 We used four porous
glass plates@Asahi Glass, MPG-AM~S!# which we label A
~mean pore radiusa50.15 mm, volume fraction of pores
f50.53!, B ~a50.275mm, f50.50!, C ~a50.35mm, f50.49!
and D ~a50.50 mm, f50.48!, all of which were 0.5 mm
thick.

Porous glass is an efficient adsorbent, so that, if expo
to atmosphere, it adsorbs a large number of OH groups
water molecules along with some other molecules on
pore surface. The OH group has weak absorption peak
the visible region and a few stronger absorption peaks in
near-infrared region.29 In order to eliminate the absorption
the porous glass plates were first treated chemically to
move OH groups and water. The procedure was as follow30

~1! Boil the sample in oxygenated water for about 30 m
dry it by heating, and let it cool to room temperature.

~2! Soak the sample in 30% NH4Faq for 20 min, and then
wash out the excess NH4F.

~3! Bake the sample at 110 °C for 10 min, and let it co
down to room temperature.

~4! Soak the sample in 1N-HNO3 to fix the fluorine onto
the surface.

~5! After baking again at 110 °C for 15 min, put th
sample in a vacuum cell.

~6! Heat the cell gently over a period of 30 min to brin
the temperature up to 400 °C, and hold the temperature
12 h.

In porous glass, a randomly connected network of po
permeates the glass, taking up as much as 50% of the
volume. The scatterer configuration is therefore far remo
from that of sparsely distributed random scatterers which
often taken as a model of a random medium.

A. Transmission spectrum and transport mean free path

When the light propagation is diffusive, the transmittan
T through a plate of random medium of thicknessL is given
by

T5
zp1z0

L12z0
, ~2.1!

according to the transport theory of diffusion.31 It is assumed
here thatL is much larger than the transport mean free p
l * . The penetration depthzp and the virtual extrapolation
depthz0 are both quantities proportional tol * , with the pro-
portionality coefficients varying to a small degree accord
to the method of estimation.7,8,25 Employing the widely ac-
cepted valueszp5 l * andz050.71l * , Eq. ~2.1! can be used
to obtain l * from the transmittanceT. By measuring the
transmission spectra of the porous glass plates, we obta
the transport mean free pathl * over a wide range ofl.
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The measured spectra for the four glass plates~A, B, C,
and D! are shown in Fig. 1. We have omitted the data in
regions of known absorption peaks of OH groups and wa
molecules, since the raw data showed small dips that w
clearly ascribable to the residual OH groups and water m
ecules on the pore surface. Figure 2 shows the normal
transport mean free pathl * /l as a function of size paramete
a/l. In the figure we also show the ISA calculations usi
the Mie scattering amplitude for spherical holes of radiusa
in glass~dashed curve! and for glass spheres of radiusa in
air ~dotted curve!. The data for all four samples fall on
single smooth curve. This proves that the porous glass
well-characterized random medium, and also that the li
propagation is diffusive. The normalized transport mean f

FIG. 1. Transmission spectra~bold curves! of porous glass
plates A, B, C, and D. The pore radii are 0.15mm ~A!, 0.275mm
~B!, 0.35mm ~C!, and 0.50mm ~D!. The volume fraction of pores is
0.5, andl is the wavelength of light in air.

FIG. 2. Size parameter (a/l) dependence of normalized tran
port mean free path (l * /l) of porous glass. Data for all sample
A–D are plotted in the figure~bold curves!. The volume fraction of
pores is 0.5. The dashed curve and the dotted curve are ISA c
lations for spherical holes of radiusa in glass and for glass sphere
of radiusa in air, respectively.
e
er
re
l-
ed

a
t
e

path l * /l depends linearly on the size parameter fora/l
*0.3, as would be expected from the geometrical optics.
interesting that the linear dependence already appears ata/l
as small as 0.3. With decreasinga/l, the curve goes through
a minimum ata/l50.15 and turns to increase again. T
smallest valuel * /l;5, is much larger than the Ioffe-Rege
threshold of localizationl * /l.1/(2p). We can therefore
safely conclude that the light propagation in the pres
samples is diffusive in the entire range of size parameter
the regiona/l&0.1, the curve fitsl * /l}(a/l)23 which is
expected for Rayleigh scattering by small particles.

This measurement over a wide range of the size param
was made possible by combining the transmission spectr
four samples of different pore sizes with a same volu
fraction. This is a continuous observation of the crossove
light diffusion from the Rayleigh scattering region to th
region of geometrical optics.

B. Time-of-flight measurement and diffusion constant

The diffusion constantD was obtained from the time-of
flight measurement. The surface of the sample plate wa
radiated perpendicularly by a cw mode-locked dye laser,
time-resolved total transmission intensity was measure21

The wavelength and the autocorrelation width of the d
laser were 603.5 nm and 5 ps, respectively. The transmi
light pulse was detected using a synchroscan streak cam
~Hamamatsu Photonics, M1955!. The temporal width of the
incident pulse observed with the streak camera was 21 p
Fig. 3 we show the observed intensity profile of the puls
transmitted through the samples A–D and that of the incid
pulse. Also shown in the figure are theoretical curves ba
on the model of particle diffusion.32,33 A particle entering a
slab of random scattering medium of thicknessL at time t
50 on one side undergoes diffusion across the slab
emerge on the other side at timet with the probability per
unit time given by

u-

FIG. 3. Temporal intensity profile of the light pulse transmitt
through samples A–D. The measured profile for the incident pu
is shown at the bottom.
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T~L;t !5
1

z0

D

~4pDt !1/2 (
n52`

` FexpS 2
@L12~L12z0!n#2

4Dt D
2expS 2

@L12~zp1z0!12~L12z0!n#2

4Dt D G . ~2.2!

The theoretical curves in Fig. 3 are the convolution of E
~2.2! with the experimental response function shown at
bottom of the figure, with the parameterD adjusted so as to
give the best fit to the measurement. The agreement betw
the experiment and the theoretical curves is such that one
hardly see the difference. This shows how the long-ra
behavior of light diffusion in the porous glass is precise
described by the diffusion equation, whereupon yielding
value ofD as well.

The same measurement was repeated several time
each sample, changing the irradiation position on the sam
surface. The obtained values ofD are shown with error bars
in Fig. 4 in the dimensionless formD/(lc0) with c0 being
light velocity in vacuum.

Using the values ofl * andD in the Boltzmann relation

D5
1

3
vEl * , ~2.3!

which is familiar from the standard theory of particle diffu
sion, we also obtained the transport velocityvE as a function
of a/l. The result is shown as solid curves in Fig. 5, whe
it is compared with ISA calculation with the Mie scatterin
amplitude for spherical holes of radiusa in glass ~dashed
curve!, and for glass spheres of radiusa in air ~dotted curve!.
The experimentally obtained values ofvE decreases with the
increase of the size parameter, approachingvE.0.4c0 , a
value smaller than the light velocity in glass.

Whereas the variation ofvE againsta/l is qualitatively
reproduced by the ISA calculation for glass spheres in
the ISA curve for spherical holes in glass shows oppo
dependence on size parameter. Forl * and D, on the other
hand, the experimentally obtained values in Figs. 2 and 4

FIG. 4. Size parameter (a/l) dependence of normalized diffu
sion constant@D/(lc0)# of porous glass~bold curve!. The volume
fraction of pores is 0.5. The dashed curve and the dotted curve
ISA calculations for spherical holes of radiusa in glass and for
glass spheres of radiusa in air, respectively.
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closer to the ISA calculation for spherical holes in glass, a
the deviation is significantly larger for the ISA result fo
glass spheres in air. This contradiction does not appear t
resolved by considering different shapes of scatterers in
ISA calculation, as a similar calculation for long cylindric
scatterers resulted in a similar overall behavior ofD and l *
with slightly weaker functional dependencel * /l}(a/l)22

at smalla/l.21 This is more likely to be an indication of a
inherent difficulty of ISA even when applied to the diffusiv
propagation well away from the Ioffe-Regel criterion of lo
calization.

III. ENERGY DIFFUSION VIA WAVE PROPAGATION

The experimental condition of the previous section inva
dates many of the conventional simplifications such as I
and shell approximation. In the porous glass, the scatt
consists of a randomly connected network of pores wh
diameter ranges from 0.05 to 0.85 timesl. The mean free
path l is also of the same order asl, so that the broadening
of the wave-vector distribution cannot be ignored. Wave
terference effects must be pronounced in such a case,
should introduce a significant modification to the notio
based on the model of particle diffusion. In order to exam
such wave interference effects, it is necessary to have a
oretical framework that is based squarely on the wave
scription of energy transport and which has as little recou
as possible to notions borrowed from the particle diffusi
model. In this section, we consider, for the sake of simp
ity, the propagation of scalar waves in a random mediu
We outline the energy transport theory, and derive expr
sions of such physical quantities asl * , D, andvE on a gen-
eral footing. In the light of this analysis, we then examine t
shortcomings of the ISA which is widely used in the liter
ture. The analysis provides the background for the formu
tion of a model of spatially fluctuating dielectric constant
the next section.

re

FIG. 5. Size parameter (a/l) dependence of transport velocit
vE of porous glass~bold curve!. Data for all samples A–D are
plotted in the figure. The volume fraction of pores is 0.5. T
dashed curve and the dotted curve are ISA calculations for sphe
holes of radiusa in glass and for glass spheres of radiusa in air,
respectively.
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A. Energy current and energy density

In order to discuss the energy transport via wave pro
gation, expressions of energy density and energy curren
required. For a scalar wave propagating among scattere
a fixed spatial configuration, we start with the Lagrangian

L~¹f,] tf,¹f* ,] tf* ;r!

[
1

2F «~r!

c0
2

] tf* ~r;t !] tf~r;t !2¹f* ~r;t !¹f~r;t !G ,

~3.1!

where f denotes the scalar field, and the ‘‘dielectric co
stant’’ «(r) is a random function of the spatial coordinate
We do not specify the nature of randomness here, and
ceed on a general basis. The energy-momentum tensor

Tn
m[

]L

]f ;m
f ;n1

]L

]f ;m*
f ;n* 2Ldn

m , m,n,Pt,x,y,z

~3.2!

then has the form

Tt
t5

1

2F «~r!

c0
2

] tf* ] tf1¹f* •¹fG
and

~Tt
x ,Tt

y ,Tt
z!52

1

2
@] tf* ¹f1¹f* ] tf#. ~3.3!

A scalar wave emitted at timet50 by a point source at a
position r8 produces an energy current

j~r,r8;Dt ![2
1

2
@¹G1~r,r8;Dt !] tG1* ~r,r8;Dt !

1¹G1* ~r,r8;Dt !] tG1~r,r8;Dt !# ~3.4!

at time t5Dt at a pointr, where

G1~r,r8;Dt !5E dk

~2p!3E dk8

~2p!3E dv

~2p!3
exp~ ik•r

2 ik8•r8!exp~2 ivDt !G1~k,k8;v!

~3.5!

is the retarded two-point function that satisfies

1

2F «~r!

c0
2

]Dt
2 2¹2GG1~r,r8;Dt !5d~Dt !d~r2r8!. ~3.6!

The advanced two-point function will be denoted
G2(r,r8;Dt) or G2(k,k8;v). Carrying over to the expres
sion in the Fourier space, and taking an average over ran
realizations of«(r), the energy current can be written as
-
re
of

-
.
o-

m

j~r,r8;Dt !5E dv

~2p!3E dDv

~2p!3E dDk

~2p!3
exp$ iDk•~r2r8!

2 iDvDt%J~Dk;Dvuv!, ~3.7!

where

J~Dk;Dvuv!5
1

2E dk

~2p!3
@k1v21v1k2#Ck~Dk;Dvuv!

~3.8!

with k65k6 1
2 Dk, andv65v6 1

2 Dv. Here,

Ck~Dk;Dvuv!

[E dk8

~2p!3
^G1~k1 ,k18 ;v1!G2~k2 ,k28 ;v2!&C ~3.9!

is the sum of Fourier components of the four-point functio
and the bracket̂&C denotes configurational averaging ov
the random realizations of«(r). The quantityCk(Dk,Dvuv)
is the wave-picture equivalent of the probability distributio
function of a particle of energyv that started propagating
from a point source in space.

Following the same procedure for the energy density,
the other hand, we arrive at the expression

S~r,r8;Dt ![
1

2K «~r!

c0
2

] tG1~r,r8;Dt !] tG1* ~r,r8;Dt !

1¹G1~r,r8;Dt !•¹G1* ~r,r8;Dt !L
C

.

~3.10!

However, in order to take an average over the random s
terer configurations, information is required of the spat
correlation between the field strength and the dielectric c
stant«(r). Therefore, this procedure does not yield an e
pression of energy density solely in terms of Green’s fu
tions.

A way around this problem was proposed by van Alba
van Tiggelen, Lagendijk, and Tip,24–27 who suggested the
use of the Bethe-Salpeter equation for the four-point fu
tion. Denoting byGe6 the two-point function after configu
rational averaging

Ge6[^G6&C ,

the four-point function satisfies

Ck~Dk;Dvuv!

5Ge1~k1 ;v1!Ge2~k2 ;v2!

3F11E dk1

~2p!3
Ukk1

~Dk;Dvuv!Ck1
~Dk;Dvuv!G ,

~3.11!

where Ukk1
(Dk;Dvuv) is the irreducible scattering

kernel.34–36 Using G1G25(G22G1)/(G1
212G2

21),
this can be recast in the form of a transport equation3,20
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DvS v

c̄
D 2

Ck~Dk;Dvuv!2Dk•kvCk~Dk;Dvuv!

52v@Ge1~k1 ;v1!2Ge2~k2 ;v2!#E dk1

~2p!3
Ukk1

~Dk;Dvuv!Ck1
~Dk;Dvuv!1v@S1~k1 ;v1!

2S2~k2 ;v2!#Ck~Dk;Dvuv!2v@Ge1~k1 ;v1!2Ge2~k2 ;v2!#, ~3.12!

whereS6 is the self-energy defined by

S6[Ḡ6
212Ge6

21 , ~3.13!

where Ḡ6 is the propagation function for the scatterer-free homogeneous medium with an appropriate uniform di
constant«̄5(c0/c)2.

The right-hand side, as it stands, depends implicitly onDk andDv throughk6 andv6 in Ge6 , S6 , andU. However,
the dependence onDk exactly cancels out whenDv50 due to the Ward-Takahashi~W-T! identity;37

S1~k1 ;v1!2S2~k2 ;v2!5E dk1

~2p!3
Ukk1

~Dk;Dvuv!@Ge1~k11 ;v1!2Ge2~k12 ;v2!#1
vDv

v21Dv2FS1~k1 ;v1!

1S2~k2 ;v2!1E dk1

~2p!3
Ukk1

~Dk;Dvuv!@Ge1~k11 ;v1!1Ge2~k12 ;v2!#G . ~3.14!

Expanding Eq.~3.12! to first order inDv andDk and integrating overk, we obtain

DvE dk

~2p!3 H S v

c̄
D 2

2FRe S1~k;v!1E dk1

~2p!3
Re Ge1~k1 ;v!Re Uk1k~0;0uv!G J

3Ck~Dk;Dvuv!2vE dk

~2p!3
~k•Dk!Ck~Dk;Dvuv!52 ivE dk

~2p!3
Im Ge1~k;v! ~3.15!
er
f
n

t

in
of
-

ns
e-

on

n-
we
ob-

ong
fu-
ua-
in the limit Dk,Dv→0, where the notations Re and Im ref
to the real part and the imaginary part, respectively, o
complex quantity. This can be interpreted as an equatio
continuity

DvS2Dk•J5 iQ ~3.16!

with the conserved current

J5vE dk

~2p!3
kCk~Dk;Dvuv! ~3.17!

and the conserved density

S5E dk

~2p!3 H S v

c̄
D 2

2FRe S1~k;v!

1E dk1

~2p!3
Re Ge1~k1 ;v!Re Uk1k~0;0uv!G J

3Ck~Dk;Dvuv!. ~3.18!

The right-hand side of Eq.~3.15! corresponds to a poin
source of radiation that is localized both in space and tim
SinceJ coincides with the expression of energy current
Eq. ~3.8!, S is identified as the energy density in the limit
Dk,Dv→0. The formula~3.18! gives the expression of en
a
of

e.

ergy density in terms of the statistical Green’s functio
alone, with the implication that the wave component of fr
quencyv and wave numberk contributes an amount

gk~v!5S v

c̄
D 2

2FRe S1~k;v!

1E dk1

~2p!3
Re Ge1~k1 ;v!Re Uk1k~0;0uv!G

~3.19!

to the energy density. It should be noted that formulas~3.8!
and ~3.18! are independent of any particular approximati
scheme.

B. Diffusion parameters

We shall now derive the expressions for diffusion co
stant, transport mean free path, and transport velocity. As
have seen in the previous section, and as has long been
served, energy propagation in a random medium over a l
spatial range and over a long period of time is often dif
sive. Energy diffusion then precisely obeys a diffusion eq
tion with a definite diffusion constantD, so that there is no
conceptual difficulty in definingD. Using Fick’s law
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J52 iDSDk ~3.20!

in the limit Dk,Dv→0, the diffusion constantD is given by

D5 lim
Dk,Dv→0

ivE dk~k•Dk!Ck~Dk;Dvuv!

E dkgk~v!Ck~Dk;Dvuv!~Dk!2

.

~3.21!

The transport mean free pathl * , on the other hand, is a
microscopic concept, and cannot be determined from
macroscopic long-range behavior of energy density alon
is then by no means obvious what the precise definition ol *
should be in the wave description of diffusion. Classica
l * is the spatial range over which a diffusing particle los
its memory of momentum, which may translate into mome
tum ~wave number! correlation length in the wave picture
Here, however, we shall not attempt to give a precise exp
sion to this notion, but instead turn to an analogy with t
classical theory of particle diffusion. In the transport theo
of elastically scattered classical particles, the particle dis
bution function has the angular dependence7,8

Ck̂~Dk;Dv!}r~Dk;Dv!2 i l * Dk~ k̂•D k̂ !r~Dk;Dv!,
~3.22!

wherek̂ denotes the unit vector in the direction ofk, andr is
the particle density. The transport mean free pathl * appears
here as the proportionality coefficient between the degre
anisotropy of momentum distribution and the macrosco
spatial gradient¹r/r. Carrying this over to the wave de
scription of diffusion, we shall define the transport mean f
path as

l * 5 lim
Dk,Dv→0

3i E dkgk~v!~ k̂•D k̂!Ck~Dk;Dvuv!

E dkgk~v!Ck~Dk;Dvuv!Dk

,

~3.23!

remembering that the wave component (v,k) contributes an
amountgk(v) to the energy density. The presence of t
numerical factor may be understood by substituting E
~3.22! into Eq. ~3.23!.

The definition of transport velocityvE, on the other hand
was given by van Tiggelen and co-workers,24–27 as the co-
efficient that relates the energy current to the energy dis
bution anisotropy in the momentum space;

J~Dk;Dvuv!5vEE dk

~2p!3
gk~v!~ k̂•D k̂!Ck~Dk;Dvuv!.

~3.24!

Then the transport velocity is

vE5 lim
Dk,Dv→0

vE dk~k•D k̂!Ck~Dk;Dvuv!

E dkgk~v!~ k̂•D k̂!Ck~Dk;Dvuv!

.

~3.25!
e
It

,
s
-

s-
e

i-

of
c

e

.

i-

With the present set of definitions, the Boltzmann relati

D5
1

3
vEl *

holds betweenD, l * , andvE. Let us note that, whereas th
relation has long been established for the diffusion of cla
cal particles7,8 and for wave propagation where a particlelik
approximation is valid, the present set of definitions exten
its realm of application to the entire diffusive regime of wa
propagation.

C. Independent scattering approximation and its problems

The argument of this section has so far been made
general grounds, independent of the particulars of the exp
mental condition. In order to apply the results to the analy
of an experiment, one is in need of knowledge of the tw
point functions and four-point functions appropriate for t
experimental condition. However, such knowledge is ve
rarely available, and one is often compelled to resort to c
tain simplifying schemes and assumptions as to the beha
of such functions. Widely used in the literature, in this r
gard, is the ISA, which assumes the wave to be scattere
each scatterer independently of other scatterers and ign
the interference effect of multiple scattering between diff
ent scatterers. This approximation is often used in conju
tion with the shell approximation, which ignores the broa
ening of the dispersion relation in the random medium. B
these approximations are valid in the limit of low scatte
density. However, under the experimental condition of
previous section and under a wide range of circumstan
where the diffusive propagation of the wave is observ
neither approximation is justified. We have, in fact, seen
the previous section that an analysis based on such a sch
fails to give a consistent account of the observed behavio
l * , D, andvE as a function of the size parameter. In order
highlight the need for a more comprehensive treatmen
multiple scattering effects, let us now analyze the ISA.

In the ISA, one assumes a random medium in which sc
terers of a same shape and size are distributed randomly.
two-point function and the four-point function are dete
mined by specifying the self-energyS6(k;v) and the irre-
ducible scattering kernelUkk8(Dk;Dvuv). In the limit of
low scatterer densityni.0, one may retain only the terms o
first order inni to obtain

S6~k;v!5ni t i 6~k,k;v! ~3.26!

for the self-energy, and

Ukk8~Dk;Dvuv!5nit i 1~k1 ,k18 ;v1!t i 2~k2 ,k28 ;v2!
~3.27!

for the scattering kernel, wheret i 6 is the retarded/advancedt
matrix of the individual scatterer placed alone in a scatte
free medium. Equations~3.26! and~3.27! represent the ISA.

Now, just as the diffusion pole in particle diffusion resul
from the particle number conservation, the diffusion pole
the case of energy diffusion results from the energy con
vation law. In terms of Green’s functions, a conservati
law finds its expression in the Ward-Takahashi~W-T!
identity 38,39 which plays an important role in determinin
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the behavior of the four-point function near the diffusio
pole.24–27 It is therefore important that the Green’s functio
satisfy the W-T identity atDk,Dv.0 in order for the diffu-
sive behavior to be described correctly. In the limitDk,Dv
→0, the identity takes the form26

Im S1~k;v!5E dk1

~2p!3
Re Ukk1

~0;0uv!Im Ge1~k1 ;v!.

~3.28!

Substituting Eq.~3.26! and ~3.27! into Eq. ~3.28!, it is seen
that the W-T identity is satisfied only up to the first order
nit i , since the left-hand side is linear innit i , while

Ge5Ḡ1Ḡni t i Ḡ1Ḡni t i Ḡni t i Ḡ1••• ~3.29!

is on the right-hand side. The discrepancy can become l
for large values ofnit i Ḡ( r̄ ) where r̄ is the typical distance
between neighboring scatterers. We compare in Fig. 6
left-hand side~solid line! and the right-hand side~dotted
line! of Eq. ~3.28! as functions ofk for the case of glass
spheres in vacuum@Fig. 6~a!# and for spherical vacuum
bubbles in glass@Fig. 6~b!# for various values of size param
eter. The dielectric constant of the glass is taken to
«glass52.25. The discrepancy is significant fora/l*0.3.

An immediate remedy for this will be to use the cohere
potential approximation37 and determine the scatteringt ma-
trix t i to be consistent with the coherent potential of t
surrounding medium. This, in effect, will partly take int
account the interference effect of multiple scattering betw
a scatterer and other scatterers in its neighborhood. At
rate, comparison of the two sides of Eq.~3.28! shows that it
is essential that effects of such interference are taken
account in a consistent description of diffusion at large v
ues ofa/l.

On top of ISA, the shell approximation is often use
sometimes implicitly, in order to simplify integration in thek

FIG. 6. Comparison between the right-hand side~solid curves!
and the left-hand side~dashed curves! of the Ward-Takahashi iden
tity ~3.28! for Green’s functions in ISA;~a! glass spheres in air,~b!
spherical holes in glass.
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space24–27 such as in Eqs.~3.8!–~3.25!. This approximation
is valid in the limit of dilute scatterers. However, a larg
value of S6(k;v) under the actual experimental conditio
invalidates the assumption of small broadening.

To summarize, for the analysis of a wide variety of actu
cases of wave diffusion where such simplifying assumptio
are invalid, it is necessary to have a scheme that give
consistent treatment to multiple scattering, and which ta
explicit account of the broadening of the Green’s function

IV. SPATIALLY FLUCTUATING DIELECTRIC
CONSTANT MODEL

We shall now take a simple model of a dielectric rando
medium, and develop a perturbation scheme that satisfies
W-T identity and which also allows inclusion of progre
sively higher-order effects of multiple scattering. We sh
use the scheme to numerically determine two-point functi
and four-point functions, and apply the analysis of the p
vious section to see the short-range interference effect
diffusion. The result will then be compared with the expe
ment.

A. Gaussian fluctuation model

Electron micrograph shows that the porous glass i
block of glass permeated by a random network of fine po
It is therefore but a crude approximation to model the m
dium with a randomly distributed ensemble of spherical sc
terers. In fact, attempts to incorporate into ISA the effect
the exclusion volume of the spherical scatterers so that t
do not spatially overlap, have invariably resulted in a gro
overestimation ofl * at long wavelengths compared to th
experiment. This is because there is a local ordering in
spatial configuration of spheres at volume fraction as high
50%, so that the long-range fluctuation of scatterer densit
strongly suppressed. The experimental fact thatl * /l
}(a/l)23 at long wavelengths suggests that the spatial fl
tuation of dielectric constant in a porous glass sample is
as strongly restrained as in a disperse suspension of h
core scatterers, but is closer to a random fluctuation in sp
Considering also the fact that the diffusive behavior of wa
propagation is a widely observed phenomenon irrespec
of the details of the random medium, we shall make no
tempt to model the specific case of the porous glass,
instead, employ a simple model with a well-controlled flu
tuation in space that has a characteristic length scalea to
correspond to the pore radius of the porous glass.

The model we employ here is that of a dielectric mediu
whose dielectric constant«(r)5 «̄1D«(r) fluctuates ran-
domly around the mean value«̄ as a function of positionr.
In order to introduce a characteristic length, we assume
fluctuation to have a spatial correlationg(Dr)[^D«(r
1Dr)D«(r)&C5^$D«(r)%2&Cexp„2(Dr )2/(2a2)…. To fur-
ther simplify the model, we also assume that the fluctuat
obeys Gaussian statistics, so that all odd-order correla
functions are zero, while all even-order correlation functio
can be decomposed into a sum of the products of the t
point correlation functionsg(Dr). In momentum space,

^D«~k!&C50,
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^D«~k1!D«~k2!&C5d~k12k2!g~k1!,

^D«~k1!D«~k2!D«~k3!&C50,

^D«~k1!D«~k2!D«~k3!D«~k4!&C

5d~k12k2!g~k1!d~k32k4!g~k3!

1d~k12k3!g~k1!d~k22k4!g~k2!

1d~k12k4!g~k1!d~k22k3!g~k2!, etc., ~4.1!

whereD«(k) and g(k) are the Fourier transform ofD«(r)
andg(r), respectively.

In order to determine the monochromatic two-point fun
tion G1(r,r0 ;v), one has to solve the equation

2
1

2F S ¹21
v2

c0
2
«̄ D 1

v2

c0
2

D«~r!GG1~r,r0 ;v!5d~r2r0!.

~4.2!

Here we regardD«(r) as the scattering term and apply th
standard procedure of the perturbation expansion.36,40 The
property~4.1! of Gaussian fluctuation is particularly conv
nient for the perturbation calculation of Green’s function
The diagrammatic rule for taking the configurational avera
is simply to pair up all the scattering vertices, and to assig
valueg(q) to each pair of vertices that carry a momentumq.

In order to obtain the two-point function, one first dete
mines the self-energyS6(k;v), whose two leading terms o
perturbation expansion are shown graphically in Fig. 7. T
simplest possible approximation is to take only the lowe
order term. However, in order for the W-T identity~3.14! to
be satisfied, the choice of approximation must be consis
with the approximation one makes to the irreducible scat
ing kernelUkk8(Dk;Dvuv). The perturbation expansion fo
the scattering kernel is given by such diagrams as in Fig
where we have shown terms of up to second order of s
tering. The simplest possible approximation here is to t
only the leading term and set

Ukk8
~1!

~Dk;Dvuv!5S v1

c0
D 2S v2

c0
D 2

g~ uk2k8u!. ~4.3!

FIG. 7. Self-energy diagrams of the Gaussian fluctuation mod
-

.
e
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e
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nt
r-

8
t-
e

This amounts to making a ladder approximation36 to the
four-point functions, and consistency is achieved only if t
self-energy is set equal to the first diagram of Fig. 7 but w
Ge6(k;v) instead of the unperturbed two-point functio

Ḡ6(k;v) for the internal light propagation line;

S6
~1!~k6 ;v6!5S v6

c0
D 4E dk1

~2p!3
g~ uk62k1u!Ge6~k1 ;v6!.

~4.4!

Since just one scattering center appears in the diagram
shall hereafter refer to this approximation as the one-site
proximation. Although implicit account is taken of the mu
tiple scattering between different scattering centers by s
ing Eqs.~4.3!, ~4.4!, ~3.13!, and~3.11! self-consistently, one
notices that no cross-interference terms such as the se
diagram of Fig. 8 are included in this approximation. In co
trast to ladder diagrams, such crossed diagrams represe
terference between time-reversed paths, and are know
play an important role in Anderson localization.34,35,41In par-
ticular, the collection of maximally crossed diagrams
known to produce precursor effects of localization such
the backscattering peak.42,43 For our samples, the observe
backscattering peak has an angular width of a few tens
milliradians.21 Since it occupies only 0.01% of the entir
solid angle, the energy flow involved in the interference
high orders of multiple scattering is small in magnitude
distances beyondl * . Nevertheless, low-order effects shou
be present at short distances and affect the quantities su
l * , D, andvE.

In order to see such effects of cross interference, we s
consider a second type of approximation. If one wishes
add the cross-interference diagram to the one-site scatte
kernel, other terms also need be added in order to pres
consistency with the W-T identity. The smallest set of d
grams is then given by the entire set of diagrams in Figs
and 8, so that

l. FIG. 8. Scattering kernel diagrams of the Gaussian fluctua
model.
S6
~2!~k6 ;v6!5S6

~1!~k6 ;v6!1S v6

c0
D 4S v6

c0
D 4E dk1

~2p!3E dk2

~2p!3
g~ uk62k1u!g~ uk62k2u!

3Ge6~k1 ;v6!Ge6~k2 ;v6!Ge6~ uk11k22k6u;v6! ~4.5!

for the self-energy, and
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Ukk8
~2!

~Dk;Dvuv!5Ukk8
~1!

~Dk;Dvuv!1S v1

c0
D 4S v2

c0
D 4E dk1

~2p!3
gS U12 ~k2k8!2k11

1

2
DkU DgS U12 ~k2k8!1k12

1

2
DkU D

3Ge1S U12 ~k1k8!1k1U;v1DGe2S U12 ~k81k!2k1U;v2D1S v2

c0
D 2S v1

c0
D 6E dk1

~2p!3
g~ uk2k8u!

3gS U12 ~k1k8!2k11
1

2
DkU DGe1S U12 ~k2k8!1k1U;v1DGe1S U12 ~k82k!1k1U;v1D

1S v1

c0
D 2S v2

c0
D 6E dk1

~2p!3
g~ uk2k8u!gS U12 ~k1k8!2k12

1

2
DkU DGe2S U12 ~k2k8!1k1U;v2D

3Ge2S U12 ~k82k!1k1U;v2D ~4.6!
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for the irreducible scattering kernel. Since two scatter
centers appear in the diagrams, we shall hereafter refe
this approximation as the two-site approximation.~A similar
set of diagrams was used within shell approximation by v
Tiggelen and Lagendijk44 in the analysis of wave diffusion
among point scatterers in terms of resonantly induced dip
dipole interactions.! For later reference, we shall name th
third term and the last two terms in Fig. 8, cross graph anc
graphs, respectively, after their appearance.

B. Numerical procedure

Once the set of diagrams for the self-energy and the i
ducible scattering kernel have been specified, the Dy
equation~3.13! and the Bethe-Salpeter equation~3.11! can
be solved self-consistently forS6(k;v) andCk(Dk;Dvuv).
In order to deal squarely with the broadening of the disp
sion relation in the random medium, we solve forS6(k;v)
andCk(Dk;Dvuv) explicitly as functions of momentumk.

First, Eqs.~4.4! or ~4.5! is solved forS6(k;v) iteratively
by calculating Ge6(k;v)5$Ḡ6(k;v)2S6(k;v)%21 from
tentative values ofS6(k;v) and substituting the result o
the right hand side to obtain the next approximation
S6(k;v). Once the convergence has been achieved, the
sult forGe6(k;v) is then used in Eq.~3.11! and either one of
Eq. ~4.3! and Eq.~4.6! to be solved forCk(Dk;Dvuv).

Here we introduce a simplification, since we need
know the behavior ofCk(Dk;Dvuv) only in the limit
Dk,Dv→0. Considering the fact thatCk(Dk;Dvuv) has a
diffusion pole atDk50,Dv50, we shall set

Ck~Dk;Dvuv!5
2p2

Dv1DDk2
$ak~v!13~ k̂•D k̂!bk~v!%.

~4.7!

Substituting this into the Bethe-Salpeter equation~3.11!, one
finds thatak(v) andbk(v) satisfy

ak~v!5uGe1~k;v!u2E k1
2dk1

2p2
Ukk1

~v!ak1
~v!, ~4.8!
g
to

n

e-

e-
n

r-

re-

bk~v!23uGe1~k;v!u2E k1
2dk1

2p2
UkDkk1Dk

~v!bk1
~v!

5 i E k1
2dk1

2p2
FUGe1~k;v!U2Im

]Ukk1Dk
~v!

]Dk

1
1

3
ImH ]Ge1~k;v!

]k
Ge2~k;v!J Ukk1

~v!Gak1
~v!Dk,

~4.9!

where

Ukk1
~v![E dVk

4p E dVk

4p
Ukk1

~0;0uv!,

UkDkk1Dk
~v![E dVk

4p E dVk

4p
Ukk1

~0;0uv!~ k̂•D k̂!~ k̂1•D k̂!,

]Ukk1Dk
~v!

]Dk
[E dVk

4p E dVk

4p

]Ukk1
~0;0uv!

]Dk
•D k̂~ k̂1•D k̂!.

~4.10!

From Eq. ~4.8!, we see thatak(v) is the eigenfunction
of the scattering kernel with the eigenvalue 1. In reali
the kernel has only one eigenvalue in the neighborhood
1 and all other eigenvalues are small in comparison, so
the amount of deviation from unity of the computed val
of the largest eigenvalue provides a good consistency ch
of the numerical procedure. We found that the deviat
could always be made small by increasing the number
mesh points for the representation ofS6(k;v) in the k
space. The fact that the largest eigenvalue is unity, in f
derives from the energy conservation law, and is rela
to the W-T identity. Multiplying both sides of Eq.~3.14!
by Ge1(k1 ;v1)Ge2(k2 ;v2) and settingDk,Dv50, one
obtains
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Im Ge1~k;v!5uGe1~k;v!u2E k1
2dk1

2p2

3Ukk1
~v!Im Ge1~k1 ;v!. ~4.11!

Comparing this with Eq.~4.8!, one concludes thatak is pro-
portional to ImGe1(k;v), so that no new calculation is re
quired for ak . The physical reason for this equivalence
that, sinceak(v) is the equilibrium distribution function in
the momentum space att→` for a monochromatic wave
that started at a point in space att50, it must be identical to
the density of states ImG(k;v) of the monochromatic wave
of frequencyv.

For bk(v), on the other hand, there is no similar relatio
ship with two-point functions, so that it has to be determin
from the Bethe-Salpeter equation~4.9!. The equation is lin-
ear in bk(v), and can be readily solved onceak(v) has
been determined. We here note that, as far asl * , D, andvE
are concerned, we need not determine the overall norma
tion factor for Ck(Dk;Dvuv) @see Eqs.~3.21!, ~3.23!, and
~3.25!#.

In the actual numerical calculation, we divided the m
mentum space into a finite number~up to 160! of thin con-
centric spherical shells, and determined values
S6(k;v), ak(v), andbk(v) on each shell, assuming the
were constant within a shell.

C. Numerical results

In Fig. 9 we showak(v) andbk(v) as functions ofk for
several values of size parametera/l and for the two types of
approximation. Here, the amplitude of dielectric const
fluctuation is set so as to correspond to porous glass sam

^D«2~rC!&C[^«2&C2 «̄25 f ~12 f !~«air2«glass!
250.39,

~4.12!

where we have usedf 50.5, «air51.0, and«glass52.25.

FIG. 9. Normalized distribution functions~a! l2uaku and ~b!
l2ubku for various values of the size parametera/l calculated for
the spatially fluctuating dielectric constant model. The dot-dash
is the one-site approximation, and the solid line is the two-s
approximation.
d

a-

-

f

t
es;

In the one-site approximation, the peak inak(v)
}Im Ge1(k;v) is sharp for small values of size paramet
(a/l&0.2). However, ata/l.0.4, the peak width become
comparable to the central wave number, confirminga poste-
riori the necessity for a full treatment of the wave numb
broadening. In the two-site approximation, the peak is
ticeably narrower than in the one-site approximation
large values ofa/l. Although this result appears to justif
the use of shell approximation for a wider range of size
rameter than is expected from the Fermi’s golden rule
should be noted that the justification is made only by car
ing out a calculation that allows description of broadening
is also unclear from the present result alone whether in
sion of higher order terms will not overturn the result of t
two-site approximation. Inspection of the contribution fro
each term in Eq.~4.5! reveals that the two-site term oscillate

rapidly as a function ofk neark.2pA«̄/l, resulting in a
significant reduction ofS6(k;v) compared to the one-sit

approximation near the on-shell momentumk.2pA«̄/l.
In order to see the dependence of scattering kernelUkk8

on the scattering angleu betweenk and k8, we define the
index of forward scatterinĝcosu& as the ratio of the forward
scattering (Y1

0) component to the isotropic (Y0
0) component

of Ukk8 ;

^cosu&[
E dkakE dk8ak8Ukk8~v!~ k̂• k̂8!

E dkakE dk8ak8Ukk8~v!

. ~4.13!

Following an analogy with the classical theory of partic
diffusion where the relationl * 5 l (12^cosu&)21 holds be-
tween the transport mean free path and the scattering m
free path, we plot in Fig. 10 the factor (12^cosu&)21 as a
function of a/l for the two types of approximation. For th
one-site approximation, the scattering is directed incre

e
e

FIG. 10. Size parameter dependence of 1/(12^cosu&) for the
spatially fluctuating dielectric constant model, where^cosu& is the
index of forward scattering as defined in Eq.~4.13! of the text. The
dot-dashed curve is the one-site approximation, and the solid c
is the two-site approximation.
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ingly in the forward direction as the size parameter is
creased, so that̂cosu& grows monotonically to approac
unity leading to large values of (12^cosu&)21 at largea/l.
For the two-site approximation, the anisotropy is smaller
the entire range of the size parameter, resulting in a sig
cant reduction of (12^cosu&)21 compared to the one-sit
approximation at largea/l. As a consequence, the transpo
mean free pathl * is smaller in the two-site approximatio
than in the one-site approximation in the entire range ofa/l,
despite the fact that the momentum distribution width is n
rower so that the scattering mean free path is longer in
two-site approximation.

The transport mean free pathl * and the diffusion constan
D calculated with the full expressions~3.23! and ~3.21! are

FIG. 11. Size parameter (a/l) dependence of normalized tran
port mean free path (l * /l) for spatially fluctuating dielectric con
stant model. The dot-dashed curve is the one-site approxima
and the solid curve is the two-site approximation. The bold curv
the experiment for porous glass.

FIG. 12. Size parameter (a/l) dependence of normalized diffu
sion constant@D/(lc0)# of spatially fluctuating dielectric constan
model. The dot-dashed curve is the one-site approximation, and
solid curve is the two-site approximation. The bold curve is
experiment for porous glass.
-

n
fi-

t

-
e

shown in Figs. 11 and 12 together with the experimen
data. There is an improvement in thea/l dependence when
the two-site effect is included. This can be regarded a
manifestation of the interference effect of multiple scatter
through the reduction of forward scattering. The present
sult does not show the oscillatory resonance behavior see
ISA calculations that use Mie scatteringt matrix of spheres
of a fixed radius21,32,45–48. This is because we now conside
random fluctuation of dielectric constant with Gaussian s
tial correlation, so that such sharp structures as are assoc
with Mie scattering are smeared out. A spherical scattere
known to have very largeQ values at large values of siz
parameter45,46 because of the high symmetry of the sphe
The present perturbative treatment does not take full acco
of multiple scattering within a single scatterer, which m
also be the reason for the lack of structure in the pres
calculation. However, in modeling light diffusion in such
medium as porous glass with the volume fraction approa
ing 50%, the random network structure should make s
one-site multiple-scattering effects relatively unimportant

The result forvE is compared with the experiment in Fig
13. There is little difference between the two types of a
proximation. A detailed inspection reveals that the cro
graph in Eq.~4.6! works to slow downvE, but the effect is
almost exactly counterbalanced by the contribution from
c graphs. The physics behind this cancellation is as yet
clear, and may be related to the conservation law and
W-T identity. Nevertheless, the net effect of scattering is t
the transport velocity is a decreasing function ofa/l, as was
the case in the experiment, and contrary to the result of I
for spherical holes in glass.

There are several possible causes of deviation of the
culation from the experiment. The truncation of perturbati
expansion is the largest source of ambiguity, which will
remedied only by a calculation that includes higher-ord
terms of multiple scattering. While the contribution of hig

n,
is

he

FIG. 13. Size parameter (a/l) dependence of transport velocit
vE of spatially fluctuating dielectric constant model. The dot-dash
curve is the one-site approximation, and the solid curve is the t
site approximation. The bold curves are the experiment for por
glass.



re
hi
g
xi
f
ag
fo
iz
c

re
e

rd
ee
on
to
pe
re
d
u

fu
in
is

oral
ell
y
e of

e
ion
l-
the
les,

es-
i-
le
his
r-
eo-
with

re-
n in

er-

6192 PRB 58KAWATO, HATTORI, TAKEMORI, AND NAKATSUKA
order diagrams is expected to be small in the diffusive
gime where interference effects are confined largely wit
the spatial distance ofl * , three-site and four-site scatterin
terms may significantly alter the results of two-site appro
mation for large values ofa/l. Another possible source o
deviation is the neglect of the vector nature of electrom
netic waves in the present calculation. It is possible to re
mulate the present calculation so as to include the polar
tion effect along the same line as was done for the ba
scattering calculation by MacKintosh and John.49 Since the
polarization should match for waves to interfere, the net
sult should be a reduction of interference as was the cas
backscattering.

While keeping such limitations in mind, we may rega
the two-site approximation to be in better qualitative agr
ment with the experiment than the one-site approximati
and a significant improvement over the ISA which fails
give even a qualitative account of the size parameter de
dence observed in the experiment. We also note that the
no adjustable parameter in the present calculation. The
ference between one-site and two-site approximation res
points to the importance of interference effects in the dif
sion regime when the size parameter is large, and also
wide variety of situations where wave energy diffusion
observed.
s
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V. CONCLUSIONS

The measurements of transmission spectra and temp
profile of the transmitted pulse from porous glass are w
explained by the diffusion model of light propagation. B
curve fitting, we obtained the size parameter dependenc
l * and D. Size parameter dependence ofvE was obtained
from l * and D by using the Boltzmann relationD
5vEl * /3. This is the first continuous observation of th
crossover from the Rayleigh scattering region to the reg
of geometrical optics in a random scattering medium. A
though the transport mean free path is much larger than
Ioffe-Regel threshold in the present porous glass samp
the obtained values ofl * , D, andvE cannot be consistently
explained by the ISA. Therefore we derived general expr
sions ofl * , D, andvE on a footing beyond the shell approx
mation or ISA by considering the wave nature of multip
light scattering, and obtained the Boltzmann relation in t
framework. Moreover, by using the model of spatially co
related dielectric constant fluctuation, we obtained the th
retical curves whose size-parameter dependence agrees
the experimentally obtained values ofl * , D, and vE. The
difference between one-site and two-site approximation
sults indicates the importance of interference effects eve
the diffusion regime. The quantitative deviation invE might
be resolved by taking into account the higher-order interf
ence effects than the two-site approximation.
.
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