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Short-range interference effect in the diffusion of light in random media
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We study the interference effect of multiply scattered waves in the diffusive light propagation in random
media. We take porous glass samples of various pore aahian example of random media, and measure the
transport mean free path and the diffusion constam for various light wavelengths over a wide range of
the size parametea/\ =0.05-0.85. A crossover is observed from the Rayleigh scattering region to the
geometrical optics region. The transport veloaity=3D/I* determined from the data is found to decrease
monotonically witha/\, falling well below the light velocity in glass. We also present a framework of
theoretical analysis of wave energy diffusion in a most general setting, taking explicit account of the broad-
ening of light dispersion and paying attention to the requirement of Ward-Takahashi identity. We calculate
diffusion parameters as functionsaf\ for a model of spatially fluctuating dielectric constant, using two types
of self-consistent scattering approximation to the self-energy and the scattering kernel. Comparison of the
experiment against the calculation with and without interference terms of multiple scattering reveals the
importance of short-range interference effects in the diffusive propagation of [&0it63-18208)07133-1

I. INTRODUCTION random potential. However, the mathematical framework is
general enough to be applicable to any form of linear wave
Propagation of classical waves in random media has beesguation, and wave localization has now been predicted for a
a subject of investigation for quite some tinte® It has long  wide range of systems from electromagnetic waves in a ran-
been observed that, in a wide range of cases, the propagatiolom dielectric mediuni!~13to sound waves in a nonuniform
of energy over a long distance and over a long time ismaterial**~1® Despite numerous attempts to realize localiza-
diffusive* Examples include light propagation in the atmo-tion of a classical wave, a conclusive demonstration has
spheric cloudi and transmission of radio waves through aproved difficult. However, the observation of a precursor ef-
cloud of interstellar objects in spaté&lectronic conduction fect in the form of enhanced backscattering of light from
through a resistor may also be put in the same context if ondisordered medid1°gave a clear demonstration of the ex-
assumes a noninteracting Fermi fluid and solves the "'Schrastence of interference effects over long spatial distances.
dinger equation for the electronic wave function in a randomnvestigation into the long-range interference effects has
potential® In all such cases, long-range propagation is wellbeen intensively pursued ever sirfcg?®?'and an observa-
described by a diffusion equation with a definite diffusiontion of a strong evidence of localization of light in GaAs
constant. One might then be tempted to construct a picture gfowder was reported quite recentfy.
energy diffusion in terms of the diffusion of particles which  Such developments, on the other hand, have given a re-
travel at a certain speed to undergo a series of collisions withewed impetus also to the investigation into the nature of
pointlike scattering centers. A standard theory of such diffu-diffusive propagation of classical waves, especially to the
sion involves quantities such as transport mean free Ifath effort to construct a full description of energy diffusion in
and transport velocity g, which are related to the diffusion terms of wave propagation. The diffusive behavior of energy
constantD by D=2vgl*."® However, such a theory is so propagation is a general phenomenon that is observed in a
firmly based on the picture of diffusing classical particles, itwide variety of random media. The scatterers may be par-
does not readily yield to an interpretation in terms of theticles of a finite size as in the case of polystyrene spheres
underlying wave propagation. The scattering cross section afuspended in watér. Porous glass, on the other hand, is a
individual scatterers may be determined in the wave picturdlock of glass permeated by a random network of fine pores.
to obtainl*, and the wave propagation speed may be One would have achieved a good understanding of the phe-
determined from the energy propagation speed in the freeomenon of wave diffusion if one could calculate diffusion
space. But once these parameters are determined, one cariggameters such &8, D, andvg from the knowledge of the
over to the particle picture and assumes that the wave natursicroscopic structure of the random medium. However, it
is not manifest over a spatial distance beydhd has been recognized that the definition of such parameters in
However, the wave nature reappears beyond distancdbe wave picture is far from triviat?>?*For example, it has
over|* if the scattering is strong enough to satisfy the loffe-been pointed out that in the case of light scattering by dielec-
Regel criteriol 1* /A <1/(27), where\ is the wavelength of tric spheres of a finite size, the multiple scattering in and
the propagating wave. Then the interference between multaround each individual sphere results in a dwell time which
ply scattered waves is no longer negligible over long dis-slows down the propagation speggconsiderably*=2'This
tances, and a linear wave can localize and cease to propagavas put forward as a possible explanation of the experimen-
diffusively.1° This so-called Anderson localization was for- tal results that the velocityg determined from the measure-
mulated for the Schiinger equation for an electron in a ment ofD andl* very often came out smaller than the light
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velocity either in the host material or inside the dielectric In the experiment of multiple scattering of light in random
scatteref® This fact indicates the importance of the interfer- media, the key features required of the target sampléare
ence effect of multiple scattering even in the diffusive re-well-characterized spatial structur@) high contrast of re-
gime well away from the loffe-Regel criterion. fractive index between the host and the scatterers, (a8nhd
So far, the theory of multiple light scattering is estab-low light absorption. Commercially available porous silica
lished only in the weak scattering limit and in the dilute limit glass provides an optimal choice for this purpose, since the
of scatterer concentration. A commonly used treatment in theore radius is controlled to an accuracy ©0% about its
literature is the independent scattering approximati&s), mean value, the volume fraction of the pores can be mea-
which takes into account the wave interference in obtainingsured with precision, the contrast in refractive index is 1.5
the scattering amplitude of individual scatterers but otherfor glass against 1.0 for air/vacuum, and glass has minimal
wise treats the propagation of light as the diffusion of clas-absorption in the visible range &f?® We used four porous
sical particles In an ISA treatment, shell approximation is glass plate§Asahi Glass, MPG-ANS)] which we label A
often implicitly used, where a definite dispersion relation is(mean pore radius=0.15 um, volume fraction of pores
assumed in the material. This enables one to define withodt=0.53, B (a=0.275um, f=0.50, C (a=0.35 um, f=0.49
ambiguity such quantities as phase velocity and group velocand D (a=0.50 um, f=0.48, all of which were 0.5 mm
ity. Such a treatment is valid when the scatterer density ishick.
low, and gives indeed a good account of the energy diffusion Porous glass is an efficient adsorbent, so that, if exposed
under appropriate circumstancds?®However, the diffusive  to atmosphere, it adsorbs a large number of OH groups and
behavior is not confined to such limiting cases but is widelywater molecules along with some other molecules on the
observed even in cases of high scatterer concentration amqbre surface. The OH group has weak absorption peaks in
large scattering amplitude, as long as the scattering meathe visible region and a few stronger absorption peaks in the
free pathl is longer than\. Interference then takes place not near-infrared regiof° In order to eliminate the absorption,
only around individual scatterers but between different scatthe porous glass plates were first treated chemically to re-
terers as well. For a fixed frequency, the wave vector is dismove OH groups and water. The procedure was as folfws:
tributed over a width~2/1, so that there is a broadening of (1) Boil the sample in oxygenated water for about 30 min,
the dispersion relation. If the broadening cannot be ignoredry it by heating, and let it cool to room temperature.
compared to zr/\, the definition of such quantities 4% (2) Soak the sample in 30% N, for 20 min, and then
anduvg is no longer straightforward. One is then in need of awash out the excess NR.
consistent framework of description which goes beyond the (3) Bake the sample at 110 °C for 10 min, and let it cool
shell approximation or the ISA, and which takes explicit ac-down to room temperature.
count of the interference effect of multiple scattering. While  (4) Soak the sample in 1N-HNCto fix the fluorine onto
wave interference around individual scattering centers resulthe surface.
in a reduction ob g in the framework of ISA, a full treatment (5) After baking again at 110 °C for 15 min, put the
of wave interference between different scatterers in a broadesample in a vacuum cell.
framework should affect all diffusion parametds |*, and (6) Heat the cell gently over a period of 30 min to bring
VE. the temperature up to 400 °C, and hold the temperature for
Our aim is to establish a general description of light dif-12 h.
fusion that is applicable to a wide variety of random media In porous glass, a randomly connected network of pores
by taking into account the wave nature of light. In this paper,permeates the glass, taking up as much as 50% of the total
we address the problem on both experimental and theoreticablume. The scatterer configuration is therefore far removed
fronts. Experimentally, we investigated light propagation infrom that of sparsely distributed random scatterers which is
porous glass and measured transport mean freel pattif- often taken as a model of a random medium.
fusion constantD, and transport velocityg over a wide
continuous range of the size parameiéx with a being the A. Transmission spectrum and transport mean free path
radius of the pores and being the wavelength of the inci-
dent light in vacuum. The result is analyzed in a theoreticall_
framework that is general enough to encompass a wide varj-
ety of situations where light diffusion is observed. We com-
pare model calculations with the experiment to elucidate the
interference effect of multiple scattering in wave diffusion.

When the light propagation is diffusive, the transmittance
through a plate of random medium of thicknéss given

_ Zytzg
L+2z,’

(2.9

according to the transport theory of diffusidhlt is assumed
here thatL is much larger than the transport mean free path
I*. The penetration depth, and the virtual extrapolation
depthz, are both quantities proportional t6, with the pro-
We measured the transport mean free pidthand the portionality coefficients varying to a small degree according
diffusion constanD of light in porous glass by measuring to the method of estimatiof?> Employing the widely ac-
the transmission spectra and the temporal intensity profile afepted valueg,=1* andz,=0.71*, Eq.(2.1) can be used
light pulses transmitted through the sample plates. The transe obtain|* from the transmittancd. By measuring the
port velocityv g was obtained fronD andl* using the rela- transmission spectra of the porous glass plates, we obtained
tion D=vgl*/3. the transport mean free palth over a wide range ok.

Il. EXPERIMENTAL STUDY
OF MULTIPLE SCATTERING
OF LIGHT IN POROUS GLASS
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FIG. 1. Transmission spectrébold curve$ of porous glass
plates A, B, C, and D. The pore radii are 0.4 (A), 0.275um FIG. 3. Temporal intensity profile of the light pulse transmitted
(B), 0.35um (C), and 0.50um (D). The volume fraction of pores is  through samples A—D. The measured profile for the incident pulse
0.5, and\ is the wavelength of light in air. is shown at the bottom.

The measured spectra for the four glass plagesB, C,  path|*/\ depends linearly on the size parameter &6k
and D are shown in Fig. 1. We have omitted the data in the= 9 3, as would be expected from the geometrical optics. It is

regions of known absorption peaks of OH groups and watejeresting that the linear dependence already appears. at

molecules, since the raw data showed small dips that wergs ¢ mail as 0.3. With decreasiag\, the curve goes through
clearly ascribable to the residual OH groups and water mol- minimum a.ta{/)\zo 15 and turn's to increase again. The
ecules on the pore surface. Figure 2 shows the normalize% ) '

* ~ i -
transport mean free patfi/\ as a function of size parameter fr:? ssllﬁglt dvilfu?ocg\lizaii,olrsi *n/])l\] ihlll?g_re)r tcsg ::genl(t):;;ce)?eel
a/\. In the figure we also show the ISA calculations using . SR
the Mie scattering amplitude for spherical holes of radius safely co_nclgde .tha_t the “gh.t propagatlon in the present
in glass(dashed curveand for glass spheres of radiasin sample§ is diffusive in the ent|r§ rfnge of S|z_e3parr_;1me_ter. In
air (dotted curv@ The data for all four samples fall on a the regiona/A=0.1, the curve fitd*/x(a/h) ~* which is
single smooth curve. This proves that the porous glass is §<Pected for Rayleigh scattering by small particles.
well-characterized random medium, and also that the light This measurement over a wide range of the size parameter
propagation is diffusive. The normalized transport mean fregvas made possible by combining the transmission spectra of

four samples of different pore sizes with a same volume
30 —— . . ' fraction. This is a continuous observation of the crossover of
light diffusion from the Rayleigh scattering region to the
region of geometrical optics.

20 L H . B. Time-of-flight measurement and diffusion constant

i The diffusion constanD was obtained from the time-of-
b 1 flight measurement. The surface of the sample plate was ir-
\ radiated perpendicularly by a cw mode-locked dye laser, and

ok § i time-resolved total transmission intensity was measéted.
: / ] The wavelength and the autocorrelation width of the dye
i L_. ,,,,,, - laser were 603.5 nm and 5 ps, respectively. The transmitted
0y T ] light pulse was detected using a synchroscan streak camera
RS eut USRI (Hamamatsu Photonics, M1965he temporal width of the
. : . . incident pulse observed with the streak camera was 21 ps. In
Fig. 3 we show the observed intensity profile of the pulses
transmitted through the samples A—D and that of the incident
FIG. 2. Size parameter(\) dependence of normalized trans- PUlS€. Also shown in the figure are theoretical curves based
port mean free pathlt/\) of porous glass. Data for all samples ©n the model of particle diffusioff:** A particle entering a
A-D are plotted in the figurébold curves. The volume fraction of ~ Slab of random scattering medium of thicknésst timet
pores is 0.5. The dashed curve and the dotted curve are ISA calc@0 on one side undergoes diffusion across the slab to
lations for spherical holes of radiasin glass and for glass spheres emerge on the other side at tinhavith the probability per
of radiusa in air, respectively. unit time given by

/A

alh
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. FIG. 4. Size parametem(\) dependence of normalized diffu- FIG. 5. Size parametera(\) dependence of transport velocity
sion constanfD/(\cg)] of porous glasgbold curve. The volume of porous glasstbold curve. Data for all samples A-D are
fraction of pores is 0.5. The dashed curve and the dotted curve are P g ' P

: ) S plotted in the figure. The volume fraction of pores is 0.5. The
ISA calculations for spherical holes of radiasin glass and for . -
S ) dashed curve and the dotted curve are ISA calculations for spherical
glass spheres of radigsin air, respectively.

holes of radiusa in glass and for glass spheres of radau air,
respectively.

[

1
T(L;t)= Z —(4th)1’2 2y

[L+2(zpt+20)+ 2(L+220)n]2)
_ex"( N 4Dt

[L+2(L+2z,)n]?
Xp( - 4Dt )

closer to the ISA calculation for spherical holes in glass, and
the deviation is significantly larger for the ISA result for
(2.2 glass spheres in air. This contradiction does not appear to be
resolved by considering different shapes of scatterers in the

. N . ISA calculation, as a similar calculation for long cylindrical
The theoretical curves in Fig. 3 are the convolution of EQ.q.atterers resulted in a similar overall behavioDofnd | *

(2.2 with the gxperimgntal response funct_ion shown at th%/vith slightly weaker functional dependent®/\ o (a/\) 2
bottom of the figure, with the parametBradjusted so as 10 5 gmajia/x.2! This is more likely to be an indication of an

gri]ve the b_est fit toéhﬁ m(re]asure_mr-fnt. The ggree?int betwe?rﬁherent difficulty of ISA even when applied to the diffusive
the experiment and the theoretical curves is such that one c opagation well away from the loffe-Regel criterion of lo-

hardly see the difference. This shows how the long-range i>ation
behavior of light diffusion in the porous glass is precisely '
described by the diffusion equation, whereupon yielding the
value of D as well.

The same measurement was repeated several times for
each sample, changing the irradiation position on the sample The experimental condition of the previous section invali-
surface. The obtained values Dfare shown with error bars dates many of the conventional simplifications such as ISA
in Fig. 4 in the dimensionless form/(\c,) with ¢y being  and shell approximation. In the porous glass, the scatterer
light velocity in vacuum. consists of a randomly connected network of pores whose

Using the values of* andD in the Boltzmann relation  diameter ranges from 0.05 to 0.85 times The mean free
pathl is also of the same order as so that the broadening
of the wave-vector distribution cannot be ignored. Wave in-
terference effects must be pronounced in such a case, and
should introduce a significant modification to the notions
which is familiar from the standard theory of particle diffu- based on the model of particle diffusion. In order to examine
sion, we also obtained the transport velocityas a function  such wave interference effects, it is necessary to have a the-
of a/\. The result is shown as solid curves in Fig. 5, whereoretical framework that is based squarely on the wave de-
it is compared with ISA calculation with the Mie scattering scription of energy transport and which has as little recourse
amplitude for spherical holes of radigsin glass(dashed as possible to notions borrowed from the particle diffusion
curve, and for glass spheres of radiasn air (dotted curve model. In this section, we consider, for the sake of simplic-
The experimentally obtained valueswf decreases with the ity, the propagation of scalar waves in a random medium.
increase of the size parameter, approachipg-0.4c,, a  We outline the energy transport theory, and derive expres-
value smaller than the light velocity in glass. sions of such physical quantities &5 D, andvg on a gen-

Whereas the variation afg againsta/\ is qualitatively  eral footing. In the light of this analysis, we then examine the
reproduced by the ISA calculation for glass spheres in airshortcomings of the ISA which is widely used in the litera-
the ISA curve for spherical holes in glass shows oppositéure. The analysis provides the background for the formula-
dependence on size parameter. Porand D, on the other tion of a model of spatially fluctuating dielectric constant in
hand, the experimentally obtained values in Figs. 2 and 4 arthe next section.

Ill. ENERGY DIFFUSION VIA WAVE PROPAGATION

1
D=5vel*, (2.3



6184

A. Energy current and energy density

dw dAw
: ; _j(r,r; At =J’ f f
In order to discuss the energy transport via wave propa: I( ) 2m?3) (2m3) (2m)3

KAWATO, HATTORI, TAKEMORI, AND NAKATSUKA

PRB 58

dAk

exp{iAk-(r—r")

gation, expressions of energy density and energy current are

required. For a scalar wave propagating among scatterers of
a fixed spatial configuration, we start with the Lagrangian

L(V(l‘),ﬁt(ﬁ,V(}S*,ﬁt(ﬁ* 1r)

1| &(r)
=5 —ﬁtfﬁ*(r;t)atcb(r;t)—V¢>*(r;t)V¢>(r;t)l,

ZCS

(3.9

where ¢ denotes the scalar field, and the “dielectric con-
stant” (r) is a random function of the spatial coordinates. ,
We do not specify the nature of randomness here, and pro- EJ

ceed on a general basis. The energy-momentum tensor

ue Ot b+ o ¥ —L " t
= v 'V_ v ,V,E 1X1 12
v 5¢;M ) ad):kﬂ ; M y

(3.2

then has the form

. L&) . .
thz C2_0t¢ hp+Ve*-Vo
0

and

1
(TETTO=—5[0d*" VotV as]. (33

A scalar wave emitted at time=0 by a point source at a

positionr’ produces an energy current

1
j(r,r’;At)y=— E[VG+(r,r’;At)atGi(r,r’;At)
+VGH(r,r";At)0,G, (r,r";At)] (3.9

at timet=At at a pointr, where

dk dk’ do _
G (r,r ,At)=f (277)3f (277)3j (ZW)Seprk.r
—ik"-r")exp —iwAt)G, (k,k"; w)
(3.9

is the retarded two-point function that satisfies

> ?aAt—VZ G.(r,r";At)=8(At)8(r—r'). (3.6
0

E[s(r) ,

—iAwAt}J(AK Aw|w), 3.7
where
_ 1 dk _
J(AKAw|w)= EJ W[ker,-i-erk,]Ck(Ak,Aaﬂw)
(3.8

with k. =k* 1Ak, andw.=w* Aw. Here,

Cy(Ak;Aw|w)

(277)3<G+(k+ K0 )G (ko ke ) (3.9

is the sum of Fourier components of the four-point function,
and the brackef): denotes configurational averaging over
the random realizations ef(r). The quantityC,(AK,A | w)
is the wave-picture equivalent of the probability distribution
function of a particle of energw that started propagating
from a point source in space.

Following the same procedure for the energy density, on
the other hand, we arrive at the expression

! l S(r) ! * !
S(r,r ;At)EE ?atG+(r,r A9, G7(r,r";At)
0

+VGL (1,1 ;AL -VG* (r,1";At)
C

(3.10

However, in order to take an average over the random scat-
terer configurations, information is required of the spatial
correlation between the field strength and the dielectric con-
stante(r). Therefore, this procedure does not yield an ex-
pression of energy density solely in terms of Green’s func-
tions.

A way around this problem was proposed by van Albada,
van Tiggelen, Lagendijk, and Tig#~?" who suggested the
use of the Bethe-Salpeter equation for the four-point func-
tion. Denoting byG.. the two-point function after configu-
rational averaging

GeiE<Gi>Ca
the four-point function satisfies
C(AKAw|w)
=Gy (ki j04)Ge (k- jw-)

X

dk;
1+f(ZT)?’Ukkl(Ak;Aw|w)Ckl(Ak;Aw|w) ,

(3.1)

The advanced two-point function will be denoted by ) ) ) )
G_(r,r";At) or G_(k,k';w). Carrying over to the expres- Where Uy (Ak;Aw|w) is the irreducible scattering
sion in the Fourier space, and taking an average over randokernel®*3¢ Using G.G_=(G_-G,)/(G, *-G_"1),
realizations ofs(r), the energy current can be written as  this can be recast in the form of a transport equétion
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2
Aw(i) Ci(AK; A w|w) — Ak-koCy(AK; Aw|w)
C

dk
=—0[Ger(ky;01)—Ge (k- ;w_)]f —1Ukk (Ak Aw|w)Cy (AkAw|w)+ o[, (ki jw,)
(2,”_)3 1 1
-3 (k- ;0)]C(AkAw|w) —0[Ges (ki ;01 ) = Ge_(k_;0_)], (3.12
wherel . is the self-energy defined by
3.=G1'-G.l, (3.13

where G.. is the propagation function for the scatterer-free homogeneous medium with an appropriate uniform dielectric
constants = (cy/c)?.

The right-hand side, as it stands, depends implicithAdnandA w throughk. andw. in Ge.., 2., andU. However,
the dependence ahk exactly cancels out whetiw=0 due to the Ward-TakahastW-T) identity;*’

S (Ke i) =S _(K_: )—f | (A Aw|0)[Ges (Kys 101 )— G (Ky_ 1w )]+ whw
+(Ky 04 K, )= (2 kky AW|wW er(Kiy sy e (Ki_j0 )] 02+ Aw?

77)3 2(kisoy)

dk
+2_<k_;w_>+f(ZTlﬁukklmk;Awlw)[GH(kH;w+>+Ge_(k1_;w_>]]. (314

Expanding Eq(3.12) to first order inAw and Ak and integrating ovek, we obtain

dk w\?
wf(zwﬁ{(?

XCk(Ak;Aw|w)—wf

dk
ReX (kiw)+ f QTl)sReGe+(kl;w)Re Uklk(O;Olw)

k
(277)3(k.Ak)Ck(Ak;Aw|w)= —iwf (2d77)3|m Ger (kjw) (3.19

in the limit Ak,A w— 0, where the notations Re and Im refer ergy density in terms of the statistical Green’s functions
to the real part and the imaginary part, respectively, of alone, with the implication that the wave component of fre-
complex quantity. This can be interpreted as an equation afjuencye and wave numbek contributes an amount
continuity

2
AwS—Ak-J=iQ (3.16 7k(w)=(g> —|Re3 . (kw)
Cc

with the conserved current

dk,
+ f WRG Gei(ki;0)Re Uklk(O;Olw)

dk _
J=wf (ZW)Ska(Ak,Aw|w) (3.17
(3.19

and the conserved density

S:j (zd:)3[ (%

+f%ReGH(kl;w)ReUklk(o;olw)
(27m) We shall now derive the expressions for diffusion con-
X C(Ak; Aw|w). (3.189 stant, transport mean free path, and transport velocity. As we
have seen in the previous section, and as has long been ob-
The right-hand side of Eq(3.15 corresponds to a point served, energy propagation in a random medium over a long
source of radiation that is localized both in space and timespatial range and over a long period of time is often diffu-
SinceJ coincides with the expression of energy current insive. Energy diffusion then precisely obeys a diffusion equa-
Eq. (3.8), Sis identified as the energy density in the limit of tion with a definite diffusion constari?, so that there is no
Ak,Aw—0. The formula(3.18 gives the expression of en- conceptual difficulty in definindg>. Using Fick’s law

to the energy density. It should be noted that formyts)
and (3.18 are independent of any particular approximation
scheme.

2

] B. Diffusion parameters
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J=—iDSAKk (3.20 With the present set of definitions, the Boltzmann relation
in the limit Ak,Aw— 0, the diffusion constard is given by 1
D= §UEI*
_ i“’f dk(k-AK)C(AkiAw|w) holds betweerD, 1*, andvg. Let us note that, whereas this
D= lim - relation has long been established for the diffusion of classi-
Ak'A““’OJ dky( @) Cy(AK; Aw|w)(Ak)? cal particle$® and for wave propagation where a particlelike

approximation is valid, the present set of definitions extends
(3.2) . s T .
its realm of application to the entire diffusive regime of wave

The transport mean free path, on the other hand, is a Propagation.
microscopic concept, and cannot be determined from the
macroscopic long-range behavior of energy density alone. It C. Independent scattering approximation and its problems
is then by no means obvious what the precise definitidrf of The argument of this section has so far been made on

SI‘O_U"’ be in the wave description of diffusion. Classically,general grounds, independent of the particulars of the experi-
I* is the spatial range over which a diffusing particle losesyental condition. In order to apply the results to the analysis
its memory of momentum, which may translate into momen- 4 experiment, one is in need of knowledge of the two-
tum (wave numbey correlation length in the wave picture. point functions and four-point functions appropriate for the
Here, however, we shall not attempt to give a precise expregsyperimental condition. However, such knowledge is very
sion to this notion, but instead turn to an analogy with thearely available, and one is often compelled to resort to cer-
classwa}l theory of particle dl_ffu3|on. In the transport the_orYtain simplifying schemes and assumptions as to the behavior
of elastically scattered classical particles, the particle distrigs ych functions. Widely used in the literature, in this re-

bution function has the angular dependéfrice gard, is the ISA, which assumes the wave to be scattered by
. o each scatterer independently of other scatterers and ignores
Ci(Ak;Aw)=p(Ak;Aw) —il* Ak(Kk- Ak)p(Ak;Aw), the interference effect of multiple scattering between differ-

(3.22 ent scatterers. This approximation is often used in conjunc-
tion with the shell approximation, which ignores the broad-

wherek denotes the unit vector in the directionlgfandp is . f the di ! lation in th d di h
the particle density. The transport mean free patlppears ening of the dispersion relation in the random medium. Bot
: these approximations are valid in the limit of low scatterer

he_re as the proportionality c_oefflcu_ant between the degree N ensity. However, under the experimental condition of the
anisotropy of momentum distribution and the macroscopic

spatial aradient o/o. Carrving this over to the wave de- previous section and under a wide range of circumstances
sgri tior? of diffusilz)rll) .we sh};ll%efine the transport mean freeWhere the diffusive propagation of the wave is observed,
P ’ P neither approximation is justified. We have, in fact, seen in

path as the previous section that an analysis based on such a scheme
- fails to give a consistent account of the observed behavior of
3i f dkyk(w)(R~Ak)Ck(Ak;Aw|w) I*, D, andvg as a function of the size parameter. In order to
[*= |im i highlight the need for a more comprehensive treatment of
Ak,Aw—0 ) multiple scattering effects, let us now analyze the ISA.
f dky(@)C(AkiAwfw)Ak In the ISA, one assumes a random medium in which scat-

(3.23 terers of a same shape and size are distributed randomly. The

remembering that the wave component) contributes an two-point function and the four-point function are deter-

amount y,(w) to the energy density. The presence of themlned by specifying the self-energy. (ki) and the irre-

numerical factor may be understood by substituting EqduciPle scattering kemelly. (AkiAw|w). In the limit of
(3.22 into Eq.(3.23. low scatterer density; =0, one may retain only the terms of

The definition of transport velocityg, on the other hand, first order inm; to obtain

was given by van Tiggelen and co-worket$,;’ as the co- K o) =Nt (k Kk 3.2
efficient that relates the energy current to the energy distri- 2. (K w)=niti (kK ) (3.26
bution anisotropy in the momentum space; for the self-energy, and
dk N~ Ukk/(Ak;Aw|w)=niti+(k+,ki;w+)ti,(k,,kl;w,)
J(Ak;Aw|w)=vEJ W'yk(w)(k~Ak)Ck(Ak;Aw|w). (3.27
r

(3.24  for the scattering kernel, whetg. is the retarded/advanced
matrix of the individual scatterer placed alone in a scatterer-
free medium. Equation&.26) and(3.27) represent the ISA.

Now, just as the diffusion pole in particle diffusion results
wf dk(k~K\k)Ck(Ak;Aw|w) from the particle number conservation, the diffusion pole in
the case of energy diffusion results from the energy conser-
vation law. In terms of Green’s functions, a conservation
law finds its expression in the Ward-TakahaghV-T)
(3.25 identity *33° which plays an important role in determining

Then the transport velocity is

veg= lim P '
Ak,AwHOJ‘ dkyy( ) (k- AK)C(AK; Aw|w)
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T A & spacé*~?"such as in Eqs(3.8—(3.25. This approximation
a/r=07 ¢ !\ i is valid in the limit of dilute scatterers. However, a large
AL i ) i F ] value of 2. (k;w) under the actual experimental condition

invalidates the assumption of small broadening.

To summarize, for the analysis of a wide variety of actual
cases of wave diffusion where such simplifying assumptions
are invalid, it is necessary to have a scheme that gives a
consistent treatment to multiple scattering, and which takes
explicit account of the broadening of the Green'’s functions.

RHS, LHS

IV. SPATIALLY FLUCTUATING DIELECTRIC
CONSTANT MODEL

We shall now take a simple model of a dielectric random

o a/r=03 medium, and develop a perturbation scheme that satisfies the
a/h=01 1 [ a/A=0.1 ] W-T identity and which also allows inclusion of progres-
P R N—r— o sively higher-order effects of multiple scattering. We shall
0 1 2 3 0 1 2 3 use the scheme to numerically determine two-point functions
K/ (@2 m) m/emn

and four-point functions, and apply the analysis of the pre-
FIG. 6. Comparison between the right-hand sigelid curves ~ Vious section to see the short-range interference effect on

and the left-hand sidélashed curvesof the Ward-Takahashi iden-  diffusion. The result will then be compared with the experi-
tity (3.28 for Green's functions in ISA{a) glass spheres in aith) ment.
spherical holes in glass.

A. Gaussian fluctuation model

the behavior of the four-point function near the diffusion i i
pole24-2"|t is therefore important that the Green’s functions E/€ctron micrograph shows that the porous glass is a

satisfy the W-T identity at\k,Aw=0 in order for the diffu- block of glass permeated by a random network of fine pores.

sive behavior to be described correctly. In the lik,Aw |t 1S therefore but a crude approximation to model the me-
.0, the identity takes the for?h dium with a randomly distributed ensemble of spherical scat-

terers. In fact, attempts to incorporate into ISA the effect of

dk the exclusion volume of the spherical scatterers so that they

Im 2+(k;“’):f ! Re U (0;0|@)Im G, (Kq; o). do not spatially overlap, have invariably resulted in a gross
2)° ! overestimation of* at long wavelengths compared to the

(3.28 experiment. This is because there is a local ordering in the

Substituting Eq(3.26 and (3.27) into Eq. (3.28), it is seen spatial configuration of spheres at vplume fraction as h|g'h as
; g o A 50%, so that the long-range fluctuation of scatterer density is
that the W-T identity is satisfied only up to the first order of .
) AN . : strongly suppressed. The experimental fact tH&f\
n;t;, since the left-hand side is linear mt; , while 3 :

«(a/\) "~ at long wavelengths suggests that the spatial fluc-
tuation of dielectric constant in a porous glass sample is not
as strongly restrained as in a disperse suspension of hard-

dgeere scatterers, but is closer to a random fluctuation in space.
Considering also the fact that the diffusive behavior of wave
ropagation is a widely observed phenomenon irrespective
f the details of the random medium, we shall make no at-
tempt to model the specific case of the porous glass, but,
instead, employ a simple model with a well-controlled fluc-

Ge: €+ aniti€+ anitignitig'i‘ s (329

is on the right-hand side. The discrepancy can become lar

for large values oh;t;G(r) wherer is the typical distance
between neighboring scatterers. We compare in Fig. 6 thg
left-hand side(solid line) and the right-hand sidédotted
line) of Eq. (3.28 as functions ofk for the case of glass
spheres_ln vacugnﬁFlg. 6a] a_nd for sphenca}l vacuum - ation in space that has a characteristic length saale
bubbles in glas§Fig. 6(b)] for various values of size param- correspond to the pore radius of the porous glass.

eter. The dielectric constant of the glass is taken to be The model we employ here is that of a dielectric medium

Eglass= 2.25. The discrepancy is significant fafA =0.3. : , -
An immediate remedy for this will be to use the coherentVN0se dielectric constant(r)=e+Ae(r) fluctuates ran-

potential approximatioH and determine the scatterihgna- ~ domly around the mean valueas a function of positiom.
trix t; to be consistent with the coherent potential of theln order to introduce a characteristic length, we assume the
surrounding medium. This, in effect, will partly take into fluctuation to have a spatial correlatiog(Ar)=(Ae(r
account the interference effect of multiple scattering betweent Ar)As(r))c=({A&(r)}?)cexp(— (Ar)?/(2a%)). To fur-
a scatterer and other scatterers in its neighborhood. At arfper simplify the model, we also assume that the fluctuation
rate, comparison of the two sides of H8.28 shows that it obeys Gaussian statistics, so that all odd-order correlation
is essential that effects of such interference are taken intfnctions are zero, while all even-order correlation functions
account in a consistent description of diffusion at large val-can be decomposed into a sum of the products of the two-
ues ofa/\. point correlation functiong/(Ar). In momentum space,

On top of ISA, the shell approximation is often used,
sometimes implicitly, in order to simplify integration in the (Ae(k))c=0,



6188 KAWATO, HATTORI, TAKEMORI, AND NAKATSUKA PRB 58

" H .
’ ~ ’ N ' S H s
4 . ’ 4 [y y / _)JK. ¥
'I 2 ’I 'l Y 'Y x ‘,- : x‘ -
[} | 1 H Pl ' ~ x , N
S S H R = ; + o .
1 L
i e — . ——

<

X

FIG. 7. Seli-energy diagrams of the Gaussian fluctuation model. FIG. 8. Scattering kernel diagrams of the Gaussian fluctuation

model.

Ae(ky)Ae(k =0(ky{—k ki),
(Aelky)As(kz))c= ok —ko)g(ky) This amounts to making a ladder approximatfoto the

(Ae(ky)Ae(ky)Ae(ks))c=0, four-point functions, and consistency is achieved only if the

self-energy is set equal to the first diagram of Fig. 7 but with

(Ae(ky)Ae(ky)Ae(kg)Ae(ky))c Ge+(K;w) instead of the unperturbed two-point function
= 5(ky— k) g(Ky) 8(ks—ka)g(Ks) Ei(k; w) for the internal light propagation line;

+6(ki—k3)g(ky) 8(ka—ka)g(kp)

w \* [ dk
+ 8(ky—kg)g(kp) olko—ke)g(ky), etc., (4.1 29>(k+;w+):(c_—) f gk k)G (k0.
whereAe(k) andg(k) are the Fourier transform afe(r) 0 (2m)

andg(r), respectively. 4.4
In order to determine the monochromatic two-point func-
tion G..(r,ro; ), one has to solve the equation Since just one scattering center appears in the diagram, we
) ) shall hereafter refer to this approximation as the one-site ap-
1 2, "’_28_ n w—zAs(r) G (1rg: )= 8(r—ro). proximation. Although implicit account is taken of the mul-
2 Co Co tiple scattering between different scattering centers by solv-

4.2 ing Egs.(4.3), (4.4), (3.13, and(3.11) self-consistently, one
Here we regardis(r) as the scattering term and apply the notices that no cross-interference terms such as the second

standard procedure of the perturbation expan&dfThe diagram of Fig. 8 are included in this approximation. In con-
property (4.1) of Gaussian fluctuation is particularly conve- {rast to ladder diagrams, such crossed diagrams represent in-
nient for the perturbation calculation of Green’s functions.terference between time-reversed paths, and are known to
The diagrammatic rule for taking the configurational averagédlay an important role in Anderson localizatidh>*!in par-
is simply to pair up all the scattering vertices, and to assign &icular, the collection of maximally crossed diagrams is
valueg(q) to each pair of vertices that carry a momentgm known to produce precursor effects of localization such as
In order to obtain the two-point function, one first deter- the backscattering pedk® For our samples, the observed
mines the self-energy . (k; w), whose two leading terms of backscattering peak has an angular width of a few tens of
perturbation expansion are shown graphically in Fig. 7. Thenilliradians?* Since it occupies only 0.01% of the entire
simplest possible approximation is to take only the lowestsolid angle, the energy flow involved in the interference of
order term. However, in order for the W-T identit§.14) to  high orders of multiple scattering is small in magnitude at
be satisfied, the choice of approximation must be consistenfistances beyontt. Nevertheless, low-order effects should
with the approximation one makes to the irreducible scatterpe present at short distances and affect the quantities such as
ing kernelU . (Ak;Aw|w). The perturbation expansion for |* p, andve.
the scattering kernel is given by such diagrams as in Fig. 8 |n order to see such effects of cross interference, we shall
where we have shown terms of up to second order of scatonsider a second type of approximation. If one wishes to
tering. The simplest possible approximation here is to tak@dd the cross-interference diagram to the one-site scattering
only the leading term and set kernel, other terms also need be added in order to preserve
.12/ |2 consistency with the W-T identity. The smallest set of dia-
U(kt),(Ak;AwM):(_*) (_) g(lk=K']). (4.3 grams is then given by the entire set of diagrams in Figs. 7
Co Co and 8, so that

N\t odkg [odk
w_) (w_) f : f 29|k —kiDg(lk= k)

SP(ke 02) =3P (ke j02) +
S S oY R oW I pyme] P

XGet(kl;wi)Gei(kZ;wt)Get(lkl+k2_ki|;wi) (4.9

for the self-energy, and
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2 AL- 1D Ay ‘”+4‘*’74
Ukk,(Ak,Aw|w)—Ukk,(Ak,Aw|w)+ C_o _—

el

1 , 1
g E(k+k)_kl+§Ak Ger

1 1
5(k=K)= k1+2Ak‘)g(‘§(k—k’)+kl——Ak’)

2
o \?[w,\® [ dk; )
i )+ C_o) (_) j(z )3g(|k_k Y

G
e ] [ amsririe] kw01t o o
+ C_o — J'(zﬂ_)sgﬂk k'’ |)g E(k‘f’k )—kl—zAk Geo z(k—k )+ Kk

1
XGe_( 5

(277)39(

Z(k+k')+k,

oo ([ooe i

Z (K —K)+ky

1
E(k_k ) +Kq

)

(K —K)+kq ;w_> (4.6)

for the irreducible scattering kernel. Since two scattering k2dk,

centers appear in the diagrams, we shall hereafter refer tqgk(w)—3|ee+(k;w)|2f Uk k(@) By (@)
this approximation as the two-site approximatiof.similar 2P Ak !
set of diagrams was used within shell approximation by van 2
Tiggelen and Lagendiff in the analysis of wave diffusion _ kid kl{
among point scatterers in terms of resonantly induced dipole- 2
dipole interactionsg. For later reference, we shall name the

My, (@)

2
Im—>Ak

Get (K o)

third term and the last two terms in Fig. 8, cross graph énd 1 [0Ge (K )
graphs, respectively, after their appearance. 3 mrTGe(k?w)}Ukkl(w) ay, (w)AKk,
4.9
B. Numerical procedure
Once the set of diagrams for the self-energy and the irrep;here
ducible scattering kernel have been specified, the Dyson
equation(3.13 and the Bethe-Salpeter equatil1l) can
be solved self-consistently fa.. (k;w) andC,(Ak;Aw|w).
In order to deal squarely with the broadening of the disper- Ukkl(“’) f 4 f Ukkl(o Ojw),
sion relation in the random medium, we solve Br (k; w)
andC(Ak;Aw|w) explicitly as functions of momenturk.
First, Eqs.(4.4) or (4.5 is solved forX, . (k; w) iteratively ko o
by calculating Ge. (K;0) ={G.(K;0) =3 . (K;w)} "> from  Ykyky (@ f f Ui, (0;0] @) (k- AK) (ky - AK),
tentative values ob .. (k;w) and substituting the result on
the right hand side to obtain the next approximation to
.. (k;®). Once the convergence has been achieved, the re Wi, dO. [ dQ 0Ukk (o 0| .
sult for G, (k; ) is then used in E¢3.11) and either one of 14 f kf K - AR(K, - AK).
Eq. (4.3 and Eq.(4.6) to be solved foiC,(Ak; Aw|w). 7AK
Here we introduce a simplification, since we need to (4.10
know the behavior ofC (Ak;Aw|w) only in the limit
Ak,Aw—0. Considering the fact thal(Ak;Aw|w) has a From Eq.(4.9), we see thaty,(w) is the eigenfunction
diffusion pole atAk=0,Aw=0, we shall set of the scattering kernel with the eigenvalue 1. In reality,
the kernel has only one eigenvalue in the neighborhood of
2 g 1 and all other eigenvalues are small in comparison, so that
Cu(AKAw|w)= 2{ak(w)+3(R'Ak)ﬁk(a’)}- the amount of deviation from unity of the computed value
Aw+DAk of the largest eigenvalue provides a good consistency check

4.7 of the numerical procedure. We found that the deviation
could always be made small by increasing the number of

Substituting this into the Bethe-Salpeter equati®ill, one  mesh points for the representation Bf.(k;w) in the k
finds thatey(w) and By(w) satisfy space. The fact that the largest eigenvalue is unity, in fact,
derives from the energy conservation law, and is related

K2dk to the W-T identity. Multiplying both sides of Eq.3.14

ak(w):|Ge+(k;w)|2f 1 lUkk (o) (0), (4.9 by G'e+(k+ ;0. )G (K_;w_) and settingAk,Aw=0, one

272 % ! obtains




6190 KAWATO, HATTORI, TAKEMORI, AND NAKATSUKA PRB 58

40 T T T T T

(%]
o
T
~.
1

)
=)
T
\\
1

Aol
o
| T 1]
L
>
%
B
NIyl

(1-<cos€>)'1

0.2 0.4 0.6 0.8
/2w kA /(2w alh

, FIG. 9. Normalized distribution functioné) Ay and (b) FIG. 10. Size parameter dependence of H(&os#)) for the
N2 By for various values of the size paramet# calculated for  spatially fluctuating dielectric constant model, whéces6) is the
the spatially fluctuating dielectric constant model. The dot-dash lingndex of forward scattering as defined in E4.13 of the text. The
is the one-site approximation, and the solid line is the two-sitegot-dashed curve is the one-site approximation, and the solid curve

approximation. is the two-site approximation.
5 kfdkl In the one-site approximation, the peak i (w)
Im G (K;0)=|Gei (ki )] f o2 «lm Gg, (k; ) is sharp for small values of size parameter

(a/N=<0.2). However, at/\=0.4, the peak width becomes
X Uy, (@)Im Ges (kyjw). (412 comparable to the central wave number, confirmangoste-
riori the necessity for a full treatment of the wave number
Comparing this with Eq(4.8), one concludes that, is pro-  broadening. In the two-site approximation, the peak is no-
portional to ImG¢, (k; w), so that no new calculation is re- ticeably narrower than in the one-site approximation for
quired for @,. The physical reason for this equivalence islarge values ofa/\. Although this result appears to justify
that, sincea,(w) is the equilibrium distribution function in the use of shell approximation for a wider range of size pa-
the momentum space a&t» for a monochromatic wave rameter than is expected from the Fermi’s golden rule, it
that started at a point in spacetat0, it must be identical to should be noted that the justification is made only by carry-
the density of states IfB(k; w) of the monochromatic wave ing out a calculation that allows description of broadening. It
of frequencyw. is also unclear from the present result alone whether inclu-
For B,(w), on the other hand, there is no similar relation- sion of higher order terms will not overturn the result of the
ship with two-point functions, so that it has to be determinedwo-site approximation. Inspection of the contribution from
from the Bethe-Salpeter equatioh.9). The equation is lin- each term in Eq(4.5) reveals that the two-site term oscillates

ear in B(w), and can be readily solved oneg(w) has rapidly as a function ok neark=2m/s/\, resulting in a
been determined. We here note that, as fd*aD, andvg  significant reduction of . (k;w) compared to the one-site

are concerned, we need not determine the overall normaliz%- : :
. ’ ) pproximation near the on-shell momentum 27 Ve/\.
tion factor for C(AkiAw|w) [see Eqs(3.21), (3.23, and In order to see the dependence of scattering kedhgl

(3.I25)Jc.h tual ical calculati divided th on the scattering anglé betweenk andk’, we define the
n the actual humercal caicuration, we divided the€ Mo=,qey of forward scatteringcos 6) as the ratio of the forward

mentum space into a finite numbgmp to 160 of thin con- : 0 ; !
centric spherical shells, and determined values ofscattenng Y1) component to the |sotrop|cY€) component

3. (k;ow), a(w), andBi(w) on each shell, assuming they of Uk 5
were constant within a shell.
jdkakf dk’ af U () (K-K')
C. Numerical results (cos B)= (4.13
In Fig. 9 we showx(w) and B (w) as functions ok for f dkakf dk’ apU g (o)

several values of size parametdin and for the two types of

approximation. Here, the amplitude of dielectric constant-qioying an analogy with the classical theory of particle
fluctuation is set so as to correspond to porous glass Sampl‘%fl'ffusion where the relatioh* =I(1—(cos6)) * holds be-

— tween the transport mean free path and the scattering mean
2 =2\ _T2_£01_ _ 2_
(Ae“(rc))c=(e")c—e“=T(1-f)(eair glasd _O'igi free path, we plot in Fig. 10 the factor {I(cos#)) ! as a
(4.12 function ofa/\ for the two types of approximation. For the
where we have usefi=0.5, & ;= 1.0, ande g5 2.25. one-site approximation, the scattering is directed increas-
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FIG. 11. Size parametea(\) dependence of normalized trans- alk
port mean free pathl{/\) for spatially fluctuating dielectric con- FIG. 13. Size parameter(\) dependence of transport velocity

stant model. The dot-dashed curve is the one-site approximation,_ of spatially fluctuating dielectric constant model. The dot-dashed

and the solid curve is the two-site approximation. The bold curve i, rve is the one-site approximation, and the solid curve is the two-

the experiment for porous glass. site approximation. The bold curves are the experiment for porous
glass.

ingly in the forward direction as the size parameter is in-

creased, so thatcosé#) grows monotonically to approach ghown in Figs. 11 and 12 together with the experimental
unity leading to large values of (1(cosé)) *at largea/\.  gata. There is an improvement in thé\ dependence when
For the two-site approximation, the anisotropy is smaller inhe two-site effect is included. This can be regarded as a
the entire range of the size parameter, resulting in a signifimanifestation of the interference effect of multiple scattering
cant reduction of (%(cos6)) * compared to the one-site through the reduction of forward scattering. The present re-
approximation at larga/\. As a consequence, the transport gyt does not show the oscillatory resonance behavior seen in
mean free path* is smaller in the two-site approximation |SA calculations that use Mie scatteringnatrix of spheres
than in the one-site approximation in the entire ranga/af, of a fixed radiu?t3245-48 This is because we now consider
despite the fact that the momentum distribution width is naryandom fluctuation of dielectric constant with Gaussian spa-
rower so that the scattering mean free path is longer in th@a| correlation, so that such sharp structures as are associated
two-site approximation. with Mie scattering are smeared out. A spherical scatterer is

The transport mean free pdfh and the diffusion constant known to have very |arg@ values at |arge values of size
D Ca|Cu|ated W|th the fu” eXpreSSiOﬂis.z& and (321) are parameteflSAG because of the h|gh Symmetry Of the Sphere_
The present perturbative treatment does not take full account
of multiple scattering within a single scatterer, which may
also be the reason for the lack of structure in the present
calculation. However, in modeling light diffusion in such a
medium as porous glass with the volume fraction approach-
ing 50%, the random network structure should make such
1 one-site multiple-scattering effects relatively unimportant.

The result forv g is compared with the experiment in Fig.
13. There is little difference between the two types of ap-
proximation. A detailed inspection reveals that the cross
graph in Eq.(4.6) works to slow dowrvg, but the effect is
almost exactly counterbalanced by the contribution from the
¢ graphs. The physics behind this cancellation is as yet un-
clear, and may be related to the conservation law and the
W-T identity. Nevertheless, the net effect of scattering is that
TP S T N the transport velocity is a decreasing functioradX, as was
) ) ) the case in the experiment, and contrary to the result of ISA

alk for spherical holes in glass.

FIG. 12. Size parametea(\) dependence of normalized diffu- There are several possible causes of deviation of the cal-
sion constanfD/(\c,)] of spatially fluctuating dielectric constant culation from the experiment. The truncation of perturbation
model. The dot-dashed curve is the one-site approximation, and ti@xpansion is the largest source of ambiguity, which will be
solid curve is the two-site approximation. The bold curve is theremedied only by a calculation that includes higher-order
experiment for porous glass. terms of multiple scattering. While the contribution of high-
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order diagrams is expected to be small in the diffusive re- V. CONCLUSIONS

gime where .interference effects. are confined. largely w_ithin The measurements of transmission spectra and temporal
the spatial distance df', three-site and four-site scattering prfile of the transmitted pulse from porous glass are well
terms may significantly alter the results of two-site approxi-explained by the diffusion model of light propagation. By
mation for large values o&/\. Another possible source of curve fitting, we obtained the size parameter dependence of
deviation is the neglect of the vector nature of electromagt* andD. Size parameter dependencewgf was obtained
netic waves in the present calculation. It is possible to reforfrom 1* and D by using the Boltzmann relatiorD
mulate the present calculation so as to include the polariza=vel*/3. This is the first continuous observation of the
tion effect along the same line as was done for the backcrossover from the Rayleigh scattering region to the region
scattering calculation by MacKintosh and JdfrSince the Of geometrical optics in a random scattering medium. Al-
polarization should match for waves to interfere, the net refhough the transport mean free path is much larger than the

sult should be a reduction of interference as was the case féﬁ)ffe-Regel threshold in the present porous glass_ samples,
backscattering. he obtained values df, D, andvg cannot be consistently

While keeping such limitations in mind, we may regard explained by the ISA. Therefore we derived general expres-

. o ) — sions ofl*, D, andvg on a footing beyond the shell approxi-
the two-site approximation to be in better qualitative agree- Ve g bey bp

ih th : h h . 99~ mation or ISA by considering the wave nature of multiple
ment with the experiment than the one-site approximationy s seattering, and obtained the Boltzmann relation in this

and a significant improvement over the ISA which fails t0 3 mework. Moreover, by using the model of spatially cor-

give even a qualitative account of the size parameter depefg|ated dielectric constant fluctuation, we obtained the theo-
dence observed in the experiment. We also note that there j§tjcal curves whose size-parameter dependence agrees with
no adjustable parameter in the present calculation. The dithe experimentally obtained values I, D, andve. The
ference between one-site and two-site approximation resuligifference between one-site and two-site approximation re-
points to the importance of interference effects in the diffu-sults indicates the importance of interference effects even in
sion regime when the size parameter is large, and also in e diffusion regime. The quantitative deviationig might

wide variety of situations where wave energy diffusion isbe resolved by taking into account the higher-order interfer-
observed. ence effects than the two-site approximation.
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