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We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic
resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were
divided into subdomains along the length (or width) and the thickness, and by implementing coupled cir-
cuit concepts we have simulated transient responses of eddy currents for subdomains in different loca-
tions. We implemented the Eigen matrix technique to solve the network of coupled differential equations
to speed up our simulation program. On the other hand, to compute the coupling relations between the
biplanar gradient coil and any other conducting structure, we implemented the solid angle form of
Ampere’s law. We have also calculated the solid angle for three dimensions to compute inductive cou-
plings in any subdomain of the conducting structures. Details of the temporal and spatial distribution
of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot–Sav-
art law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0�, Processor: Intel(R)
Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it took less
than 3 min to simulate the entire calculation of eddy currents and fields, and approximately 6 min for
X-gradient coil. The results are given in the time–space domain for both the direct and the cross-terms
of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induc-
tion decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our
simulation results. The simulation results were found to be in good agreement with the experimental
results. In this study we have also conducted simulations for transient and spatial responses of secondary
magnetic field induced by X-gradient coil. Our approach is fast and has much less computational com-
plexity than the conventional electromagnetic numerical simulation methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Eddy currents are inevitable secondary effects of magnetic
resonance imaging (MRI) gradient coils. The switching of the
applied signals in the gradient coils generate time- and space
dependent magnetic fields that create spatially distributed
transient eddy currents in the surrounding conducting structures.
Temporal and spatially dependent secondary magnetic fields are
generated from these transient eddy currents. These decaying
magnetic fields superimposed on the desired gradient field, distort
the nuclear magnetic resonance (NMR) localization processes, and
create intensity artifacts [1,2], phase dispersion, imperfect rephas-
ing of echoes, loss of signal, and distortions of images and spectra
[3]. For this reason, the implementation of a proper compensation
technique in any MRI system requires characterization of the eddy
currents.

In this work, we have implemented a new solid angle coupled
circuit numerical analysis approach to analyze eddy current
responses in open compact MRI systems. The physics behind this
method is the multiexponential response of a network of induc-
tively coupled circuits to a time-dependent current signal. This
method is very efficient than the traditional electromagnetic
simulation approaches in terms of computational complexity,
computational time, and as it can handle boundary conditions
[4,5]. Semi-analytic solutions are also possible to get by this
method. Conventional methods, such as the finite difference time
domain (FDTD) method or the finite element method (FEM), have
a time-consuming large-scale computational burden that requires
very large memory and a high-performance computer—sometimes
with parallel processing environments [6–8]. In addition, because
of the large-scale computational complexity that combines the dif-
ferential and integral techniques, there is a possibility of having
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Fig. 1. Open compact 0.3 T magnetic resonance imaging (MRI) system for skeletal
age assessment in children.
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numerical artifacts in the final results, like the artifacts because of
interpolation in the transformation from lower dimensional grids
to higher dimensional grids or field leakage across the boundary
because of the slower propagation in the FDTD grid which differs
from the propagation speed in the continuous world and so on
[9]. The coupled circuit approach implements the advantages of
differential equation and, matrix techniques to solve this system
of first order differential equations that make it a mathematically
much less complex and faster numerical simulation scheme.

Following the coupled circuit method [10], eddy current con-
ducting structures are modeled as inductively coupled subdomains
and simple coupled differential equations are solved to find the
transient responses of eddy currents in different subdomains.
Studies [10–12] using the coupled circuit approach were done on
closed-bore (superconducting magnet) MRI systems and the cou-
pled subdomains assumed for the cylindrical cryogenic walls were
of circular ring shaped. Simple inductive coupling formulas for com-
puting the coupling relations between the subdomain and the gra-
dient coils could be implemented in those studies. In Refs. [5,13] a
network simulation – coupled in Fourier space – has been proposed
for gradient coils of arbitrary geometry in cylindrical coordinates
and validated by simulating the eddy current response in a finite
length cylindrical cryostat induced by an actively shielded cylindri-
cal x-gradient coil. Recently a Multilayer Integral Method (MIM) has
been suggested [4] in which the eddy current conducting surface is
approximated to a connected set of discrete mesh of plane triangles.
In open MRI systems, the gradient coils are of the planar type, con-
sisting of an upper and a lower coil [14]. Also, the eddy current con-
ducting structures have different geometrical shapes—for example,
the local radio frequency (RF) shielding box has a cubic structure
[15,16]. There is no direct traditional formula to compute inductive
couplings between a planar gradient coil and different subdomains.
As the formulation of a solid angle expression for three dimensions
(3D) subtended by a two-dimensional (2D) current-carrying coil of
arbitrary shape can be easily performed by simple mathematical
manipulations in the Cartesian coordinates [17–21], we have imple-
mented the solid angle form of Ampere’s law [22] to compute the
inductive coupling between planar gradient coil and any subdo-
main. We have calculated the 3D solid angle formula for both Z-gra-
dient (Gz coil) and X-gradient (Gx coil) coil patterns with the aim of
computing coupling relations to subdomains in any position. We
have also provided details of the solid angle calculation for both
Z-gradient and X- or Y-gradient coils. For the calculation of solid
angle for Z-gradient coil pattern (circular loop) we have followed
the mathematical approaches explained in [17,19,20]. In case of
X-gradient coil, because of asymmetric coil position compare to
the magnet center, we have followed an efficient segmentation solid
angle calculation approach by following the method explained by
Gotoh and Yagi [21] in their calculation of solid angle at any field
point subtended by a rectangular slit. In our study we have found
this approach mathematically less complex, faster in computer sim-
ulation, and easier to implement. This segmentation approach can
also be possible to implement to calculate solid angle for any type
of coil patterns (for example, the area covered in a cylinder by one
turn of cylindrical Gx coil can be projected on a plane, and then it
is possible to segment that projected area into several rectangular
section to calculate the total solid angle subtended by the cylindri-
cal Gx coil). Both the direct and cross-terms of the secondary fields
generated by the Z-gradient coil have been simulated in the tempo-
ral–spatial domain. We have also conducted free induction decay
(FID) measurements of eddy currents by using an NMR probe
designed at our laboratory to verify our simulation results. We have
found a good agreement between the simulation and the
experiment. Simulation of secondary magnetic field responses of
X-gradient coil has also been performed and results are given for
both transient and spatial response of eddy current fields.
2. Materials and methods

2.1. The coupled circuit method

Because of losses in conducting materials, eddy current
responses are characterized as the sum of exponentials with differ-
ent decay time constants and amplitudes in different conducting
structures [3,23–26]. This multiexponential decay of eddy currents
can in turn be modeled by inductive-resistive (L–R) series circuits
comprising conducting structures and current-generating coils
[3,10]. In 1984, Sablik et al. first formulated this concept into a
coupled circuit numerical analysis method in which eddy current
conducting structures are represented as stacks of inductively cou-
pled subdomains in mutual coupling with the current-generating
gradient coils [10]. Further works [5,11–13] have proven this
approach as an efficient, fast, and computationally less complex
numerical analysis method than the conventional methods for ana-
lyzing the eddy current characteristics in MRI systems. In this
work, we implemented a numerical approach to simulate the eddy
current responses in an open compact 0.3 T MRI system that was
developed for skeletal age assessment in children [15], as shown
in Fig. 1.

In open MRI system, the gradient coil is of the planar type con-
sisting of an upper and a lower coil positioned in the gap between
the magnet poles (as is shown in Fig. 2). In addition, the eddy cur-
rent conducting structures can have different geometric shapes,
and for this reason, we searched for a more efficient process. The
coupled circuit method works by subdividing each conducting
structure into infinitely thin sublayers and further dividing each
sublayer into subdomains. The subdomains are considered to be
inductively coupled to each other and to the gradient coils also.
System of first order differential equations is formulated from
these networks of resistive–inductive series circuits. Eddy current
transient responses in different subdomains at different spatial
locations can be easily found by solving this system of first order
differential equations.

Let us consider the eddy current responses in a cubic RF shield-
ing box. We can consider the upper and lower coils as a single eddy
current generating source. Following the coupled circuit approach
we subdivide the brass plates in the RF box into several subdo-
mains along the thickness and length of each plate [5,10–13]. For
each subdomain, we assign a self-inductance, Li, and a dc resis-
tance, Ri. If we represent the self-inductances (Li) and mutual
inductances among subdomains by the matrix, Mii, and the induc-
tive couplings between the gradient coil and any subdomain by the
matrix, Mis, then the system of coupled circuit differential equa-
tions can be expressed as [5,12]

Mii
dIðtÞ

dt
þ RiIðtÞ ¼ �Mis

disðtÞ
dt

;



Fig. 2. Schematic representation of the open compact MRI system. The planar gradient coil consisted of an upper and a lower coil, shown separately on the right side of the
diagram. The local RF shielding box is positioned in between these coils. Eddy currents are expected to be created in the brass plates of the boundary of the RF box, and the
secondary magnetic fields created by these eddy currents have a major effect on the region of interest (ROI).
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where

Mii¼

L1 M12 � M1n

M21 L2 � M2n

� � � �
Mn1 Mn2 � Ln

0
BBB@

1
CCCA; Mis¼

M1s

M2s

�
Mns

0
BBB@

1
CCCA; Ri¼

R1 0 � 0
0 R2 � 0
� � � �
0 0 � Rn

0
BBB@

1
CCCA;

in which, L1, L2, . . . , Ln are the self-inductances of the subdomains;
M12,M13, . . . , M1n are the mutual inductances between the subdo-
mains; M1s, M2s, . . . , Mns are the mutual couplings between the gra-
dient coil and the subdomains; and R1, R2, . . . , Rn are the resistances
of the subdomains; is(t) is the gradient coil current which is repre-
sented in our work as trapezoidal signal in the time-domain with
equal ramp-up and ramp-down time and constant flat-top current
of duration much higher so that the eddy current signal can decay
within this period. The signal representation can be expressed as

isðtÞ ¼

0; t 6 t1
ioðt�t1Þ

t2�t1
; t1 6 t 6 t2

1; t2 6 t 6 t3
ioðt3�tÞ

t4�t3
; t3 6 t 6 t4

0; t4 6 t

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

where io is the maximum current and parameter t1, t4 define the
start and end point of the trapezoidal signal and, t2, t3 locate the
shoulders of the signal. I(t) is the eddy current matrix with dimen-
sions equal to the number of subdomains considered. We have
applied the Eigen matrix concepts of solving differential equations
to simplify and speed up the entire calculation process.

2.2. Simplification by the eigen method

We can express the above system of ordinary differential equa-
tions as

dIðtÞ
dt
¼ AIðtÞ þ B

disðtÞ
dt

;

where A ¼ �M�1
ii Ri and B ¼ �M�1

ii Mis. For the constant flattop por-
tion of the gradient signal the second term (disðtÞ

dt ) of the right hand
side of above equation is zero and it becomes a homogeneous sys-
tem of differential equations:

dIðtÞ
dt
¼ AIðtÞ:

On the other hand, for the ramp-up or ramp-down duration of
the gradient signal, disðtÞ

dt is not zero and the system of differential
equations becomes a nonhomogeneous differential equation prob-
lem. We treat the homogeneous case by implementing the follow-
ing decoupling solution method.
Case 1: Homogeneous
Here is the general procedure: to solve a homogeneous linear

system of ordinary differential equations with constant coefficients
and initial values

dIðtÞ
dt
¼ AIðtÞ; Iðt0Þ ¼ I0:

(i) Compute the eigenvalues and eigenvectors of the coefficient
matrix A.

(ii) Use the eigenvalues and eigenvectors of A to respectively
construct the diagonal matrix D and the change of basis
matrix C, such that
D ¼ C�1AC $ A ¼ CDC�1:
(iii) Write down the general solution of the decoupled system
dz
dt
¼ Dz! z ¼

c1ek1t

..

.

cneknt

2
664

3
775:
(iv) Determine the coefficient matrix
c ¼ C�1

I1ðt0Þe�k1t0

..

.

Inðt0Þe�knt0

2
664

3
775:
(v) The solution of the original (coupled) system will be
IðtÞ ¼ Cz:
To find the solution to the initial value problem of the nonho-
mogeneous equations

dz
dt
¼ Dzþ EðtÞ; Iðt0Þ ¼ I0;

where EðtÞ ¼ C�1B disðtÞ
dt , we implement the fundamental matrix

method.
Case 2: Nonhomogeneous
The general procedure is given below.

(i) The fundamental matrix was expressed as

UðtÞ ¼
v11ek1t v12ek2t . . . v1neknt

..

. ..
. ..

.

vn1ek1t vn2ek2t . . . vnneknt

2
664

3
775;

where vn1, vn2, . . . ,vnn are the associated eigenvectors, and k1,
k2, . . . ,kn are the eigenvalues of the corresponding homogeneous
equation.
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(ii) The solutions of the nonhomogeneous equations can be
given by

IðtÞ ¼ UðtÞUð0Þ�1Iðt0Þ þ
Z t

t0

UðtÞUðsÞ�1EðsÞds:
Fig. 3. A schematic representation of the solid angle approach implemented in the
coupled circuit numerical method is shown for a circular turn of coil. Imaginary
slices are considered as inductively coupled subdomains of minimal thickness.
2.3. Coupled circuit modeling

To consider the skin effect of eddy current, at first, each con-
ducting structure is subdivided into a number of ideally infinitely
thin sublayers so that enough sublayers are considered to repre-
sent the skin depth more accurately [10]. For practical numerical
calculation purposes, a sufficient number of sublayers is consid-
ered, so that the eddy currents in each layer can be assumed as
constant. But considering a finite number of sublayers would nec-
essarily introduce some errors in the simulation results that
decrease with decreasing sublayer thickness [13]. Following the
approach in Refs. [6,10], we have considered the thickness to be
less than one-tenth of the skin depth, d. For high frequency and/
or high conductivity, the formula we took for d can be expressed
[27] as

d ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

lxr

s
;

where l is the permeability, x is the angular frequency, and r is the
conductivity. Each sublayer is again divided into several subdo-
mains along the length or width. Because the current in each subdo-
main is considered to be constant, we have assumed dc resistance
for each subdomain. The resistance of each subdomain is then cal-
culated by

R ¼ q
l

wd
;

where q is the resistivity and l, w, and d are the length, width, and
thickness of each subdomain, respectively. The self- and mutual
inductances among the subdomains are computed by applying
the simple formulas (source: Ref. [28]) given in Appendix A.

The Z-gradient coil has a combination of circular current loops
wound onto a surface of fiber-reinforced plastic (FRP) plate with
the diameter optimized using a genetic algorithm [15]. To calculate
the inductive coupling between the planar coils (upper and lower
coils) and any subdomain, we implemented the solid angle form
of Ampere’s law, according to which the magnetic flux density
(B) is proportional to the gradient of the solid angle (X) subtended
by an arbitrary loop carrying a current, icoil [22]:

B ¼ �loicoilrX
4p

:

Here, r is the gradient operator. In order to calculate the flux link-
age of the gradient coil to subdomains at any position we need to
formulate the solid angle expression considering any location in
the three dimensional space. In our analysis, we have formulated
the solid angle expression in Cartesian coordinate considering all
three axes, X, Y, and Z for both Gz and Gx type coil loops by follow-
ing the works done in Refs. [17,19–21]. Because of cylindrical sym-
metry we have followed a simple analytical solid angle calculation
approach for Gz coil (circular current loop) by following the meth-
ods given in Refs. [17,19,20]. But in case of Gx coil the current loops
are in asymmetric position with respect to the magnet center. To
consider this fact, we have applied a simple rectangular segmenta-
tion approach to calculate the solid angle of Gx coil at any position
in the region of interest (ROI) by following the method given in Ref.
[21]. Details of the calculation methods are explained in Appendices
B and C for Gz coil and Gx coil loops, respectively. A schematic
diagram of the solid angle approach in coupled circuit method has
been presented in Fig. 3 for a circular loop and subdomains of a
conducting plate of the RF shielding box. The eddy current conduct-
ing structure is divided into sublayers and subdomains along thick-
ness (along Z-axis) and length or width (along Y- or X-axis),
respectively, so that the thickness d is much smaller than the skin
depth of the corresponding signal frequency. If Bdom is the average
magnetic flux density in each subdomain generated by all the cur-
rent loops in the gradient set carrying an equal current icoil, then the
total flux across each subdomain of area Adom and, hence, the induc-
tive coupling between the gradient coil and each subdomain (Mis)
[29] can be calculated by

Mis ¼ BdomAdom=icoil:

As for the planar Z-gradient coil, it has two sets of similar coils
near the magnet poles (as shown in Fig. 2). Since current circula-
tions in these two layers of coils are opposite in direction [14]
the solid angle in the region of interest (ROI) will be of opposite
sign – for anti-clockwise current circulation the solid angle is posi-
tive and for clockwise circulation it is negative [22]. If Mir is the flux
linkage between the rth coil loop and ith subdomain, then the total
flux linkage to that subdomain from n number of loops will be

Xr¼n

r¼1

Mir :

At any subdomain in between the magnet gap, these opposite
flux linkages – induced from all of the coil loops both from the
upper and the lower coil sets – are added to get total flux linkage
of Gz coil to that subdomain. In this way, inductive coupling
between Z-gradient coil and all of the subdomains are calculated.

In case of X-gradient coil, it also has upper and lower layer coils
near the magnet poles. In addition, in each layer there have two
sets of the similar coil patterns with clockwise and anti-clockwise
current circulations [14]. Flux linkages of Gx coil to any subdomain
in the magnet gap should consider contribution of flux linkages
from these four sets of coil loops. The sign of the solid angles are
considered according to the current circulation directions men-
tioned above. Once we have calculated all the matrices of induc-
tances and resistances (Mii, Mis, and Rii) for a network of coupled
eddy current conducting subdomains, we can implement them in
the coupled differential equations to get the transient response
of eddy current in different subdomains at different locations.



M.S.H. Akram et al. / Journal of Magnetic Resonance 245 (2014) 1–11 5
2.4. Simulation parameters

We considered the distribution of eddy currents in the local RF
shielding box induced by both Z-gradient and X-gradient coils. The
shielding box was positioned within the 122 mm magnet gap,
symmetrical to the center of the gradient coil. The box is made of
0.3 mm-thick brass plates of resistivity q, 6 � 10�8 X m, and with
boundary dimensions of 220 mm � 180 mm � 100 mm. Both the
upper and lower Z-gradient coils have similar circular loops of max-
imum diameter 315.42 mm consisting of 30 circular turns. On the
other hand, the X-gradient coil were designed as a combination of
circular arc and second-order Bezier curve with the position and cen-
ter angle optimized using genetic algorithm [15]. In each part there
have 16 turns of coil and the coil pattern was restricted to a circular
region of 320 mm in diameter. For both type of coils, each gradient
coil element was made by winding polyethylene-coated copper wire
of 0.6 mm diameter on a surface of fiber-reinforced plastic (FRP)
plate. The applied gradient signal was of the trapezoidal type with
a ramp-up and ramp-down time of 170 ls and flattop duration of
1.06 ms. The corresponding skin depth was 1.60739 mm.

Because the upper and lower plates of the local shielding box are
in the X–Y plane, perpendicular to the Z-gradient (Gz) field direc-
tion, and the Z component (axial component) of the Gz field has a
much higher value than the negligible X and Y components, the
eddy currents can be assumed to exist mostly in the upper and
lower plates of the shielding box. Following the coupled circuit
method, we took two 0.15 mm-thick sublayers of each plate, which
was considered to be sufficiently thin (less than one-tenth of the
skin depth (1.60739 mm at 5.882 kHz)) to assume a constant eddy
currents along the thickness (along the Z-axis). To consider the eddy
current distribution along X- and Y-axis, we have again divided each
Fig. 4. Experimental setup to conduct FID measurements of eddy current fields. (a) The
with accuracy of 0.1 mm. The NMR probe consisted of a solenoid RF coil wound around
and a rectangular shield box made of brass plates. (b) Schematics of the signaling in the F
fall time of 170 ls and constant duration of 1.06 ms was used in the experiment. An RF ha
for the opposite gradient polarity signals by the NMR probe.
sublayer into thin subdomains along each direction. In this simula-
tion we have considered subdomains of equal width 2 mm. In this
way, subdomains taken in each layer along X-axis was 110 and
along Y-axis was 90. The number of eigen values was twice of these
values for each direction as we have divided each plate into two
thin sublayers. The dimension of each subdomain divided along
the length of each brass plate was 180 mm � 2 mm � 0.15 mm
and along the width was 220 mm � 2 mm � 0.15 mm.

2.5. Experimental setup

We compared our simulation and experimental results for
Z-gradient coil induced eddy current responses. The experiment
was conducted using the FID measurement technique [30]. We
designed an NMR probe consisting of a solenoid RF coil wound
around a 6 mm-diameter glass sphere filled with baby oil, tuning
and matching capacitors, and a rectangular shield box made of
brass plates. The experimental setup and the internal structure of
the NMR probe are shown in Fig. 4a.

The NMR probe was located at a given position in the region of
interest (ROI) by a three-axis stepper motor stage with accuracy of
0.1 mm, and paired FID signals with opposite gradient polarity
were measured followed by a 40 ls nonselective (hard) RF pulse
to calculate the temporal evolution of the eddy current fields.
Experimental details with the applied gradient configuration are
presented in Fig. 4b.

3. Results

The coupled network calculation was conducted using the
Mathematica� programming platform in a desktop computer
NMR probe was positioned at a given position by a three-axis stepper motor stage
a 6 mm-diameter glass sphere filled with baby oil, tuning and matching capacitors,
ID experiment. An amplitude of 5 A of the trapezoidal signal with a nominal rise and
rd pulse was applied immediately after the gradient and FID signals were measured



Fig. 5. Eddy current amplitudes along (a) the X-axis in the upper plate of the RF
shielding box. The plate was subdivided into sublayers along the thickness (along
the Z-axis). Here, results are given for the outermost layer. A symmetric current
distribution from the center of the plate is seen in the diagram.

Fig. 6. Transient response of eddy currents for subdomains taken at different points
(a) along the negative X-axis and (b) along the positive X-axis with respect to the
center of the magnet. The brass plates are divided along the X-axis into 110
subdomains of width 2 mm each. Distances along the X-axis (that are mentioned in
the diagrams) are measured by multiplying the number of the subdomains and the
width of each subdomain. Responses are given for the applied gradient signal of
trapezoidal shape with rise and fall times of 170 ls and a plateau length of 1.06 ms.
Eddy currents are found to be opposing the changes in the gradient coil signal, thus
reducing the amplitudes and delaying the signal responses of the original gradient
current. Also, we see a symmetric response for subdomains at the same distance
from the center of the plate.
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(Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Win-
dows 7 Professional; Memory (RAM): 4.00 GB). In the calculation,
at first we performed the computation of the resistance matrix,
Ri, and the inductive coupling matrices, Mii, and Mis. It took less
than 2 min to compute all the matrices for Z-gradient induce eddy
current responses. Then, we used these data in the network equa-
tion to compute eddy current responses. Once we had constructed
these matrices for a given configuration of the MRI system, we
could implement them in the calculation of eddy currents for any
time-dependent current applied to the gradient coil.

3.1. Z-gradient eddy current response

In our analysis, we found that the amplitudes of eddy currents
along the X- or Y-axis were symmetric to the center of the plate,
which is expected from the positioning of the gradient coil and
the upper or lower plate of the local shielding box as illustrated
in Fig. 2. Fig. 5 depicts the nature of the eddy current distribution
along the X-axis of the upper plate for the outermost sublayer.
Results are given for different time instants of the decaying cur-
rents. In addition, the central subdomain was found to have the
largest amplitudes.

In Fig. 6, eddy current responses are given as a function of time
for few subdomains located at different positions in the X-axis
direction. Fig. 6a presents the eddy current transients for several
domains located on the negative X-axis and Fig. 6b is for similar
domains on the positive X-axis. Here, we see that transient
responses have similar characteristics on both sides from the cen-
ter of the plate. We also see that the eddy current responses during
both ramp-up and ramp-down have rapid transient characteristics,
whereas they show a slower exponential decay when there is no
change in the input gradient signal. These characteristics are found
to be in agreement with the physics of a network of inductively
coupled circuits. In accordance with Lenz’s law, the responses of
eddy currents during the rising or falling portion of the input gra-
dient signal clearly depict the opposing nature of eddy currents in
an MRI system.

The secondary magnetic fields generated by these eddy currents
can be determined by the Biot–Savart law. To verify the simulation
results, we conducted FID measurements of the eddy current fields.
In the measurements, the NMR probe was positioned at different
points in the region of interest (ROI – around the center of the mag-
net gap), and the same procedure was repeated. We took FID sig-
nals for two cases: (a) keeping the brass box inside the magnet,
and (b) without the brass box. The latter case was used to measure
the secondary field due to other components of the MRI system.
These results were then subtracted to get the secondary field gen-
erated by eddy currents in the shielding box only.

The simulation and experimental results of transient eddy cur-
rent magnetic fields are combined in Fig. 7. Results are given for
several points along the Z-axis for both the positive and negative
sides from the center of the region of interest (ROI). We found that
similar points on either side from the axis origin (center of the
magnet) have nearly the same responses with opposite polarity
of field amplitudes. The time constants of the decaying transient
secondary fields are listed in Fig. 8 for several points along the
Z-axis. As for the experiments, each FID signal was exponentially
fitted to calculate the time constants. The decaying field showed
a time constant of around 170 ls. Fig. 9 depicts the results of the
secondary field along the Z-axis for different instances of the gradi-
ent signal. The responses are nearly linear along the Z-axis. We
found good agreement between the simulation and experimental
results. Both the temporal and spatial responses in the ROI along
all the three axes (X-, Y-, and Z-axis) are given in Fig. 10. Compared
with the temporal–spatial response of the Z-eddy field, the second-
ary X- or Y-eddy field responses were found to be very small.
3.2. X-gradient eddy current response

Simulation for X-gradient induced eddy currents was conducted
in the similar fashion as that for the Z-gradient coil. But the solid
angle for a coil in the X-gradient set is asymmetric considering
the center of the magnet and also considering the center of the
spherical space bounding the coil and the ROI. For this reason we
have followed a segmentation solid angle calculation approach fol-
lowing the calculation method given in Ref. [21] (details are
explained in Appendix C). Also Gx coil has four sets (two sets in



Fig. 7. The transient responses of secondary magnetic fields generated in the ROI by
the eddy currents in the local shielding box. Responses are given for (a) simulation
and (b) experiment for several points on both the positive and negative sides along
the Z-axis. The total signal duration was 1.4 ms and secondary responses were given
from 1.6 ms. The measurements were conducted for the conditions of the brass box
in the ROI and without the brass box. The eddy field without the brass box was
measured to account for the effect of eddy currents other than those in the brass
box. These fields were subtracted to find the eddy fields due to eddy currents in the
brass box only. The simulation results were in good agreement with the experi-
mental results.

Fig. 8. The experimental and simulated time constants for several points on the Z-
axis within the ROI.

Fig. 9. Linear eddy field responses for three different time instants calculated after
the end of the applied gradient current. Good agreement was found between (a)
simulation and (b) experimental results.
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the upper layer and two sets in the lower layer near the mag-
net poles) of coils compared to the two sets of coils for planar
Z-gradient coil. For both of these reasons, more calculation
resources were needed for the simulation of X-gradient coil gener-
ated eddy currents. The computational time become two times
longer (approximately 6 min) than the time required for Z-gradient
eddy current simulation. In Fig. 11 we have illustrated eddy cur-
rent distribution along the X-axis. In accordance with the Gx coil
response the eddy current response was found nearly zero at the
center of the plate whereas subdomains considered at either side
from the center show increasing values. The transient eddy current
responses for few subdomains are given in Fig. 12. We have found
that the Gx eddy currents decay faster than the Gz eddy current
(illustration given in Fig. 6). Fig. 13 illustrates the transient second-
ary magnetic fields for few points in the ROI. Compare to the
Z-gradient transient eddy field (illustration given in Fig. 7),
X-gradient eddy field was found to decay faster with an approxi-
mate decay time constant of 70 ls. The linear eddy current field
response is given in Fig. 14. Here also we see that the secondary
X-gradient fields have smaller responses than the secondary Z-gra-
dient fields (illustration given in Fig. 9). Since the current circulates
in the opposite directions in the two sets of coil in each layer of pla-
nar X-gradient coil, they also have opposing secondary magnetic
field response in the region of interest (ROI).

4. Discussion

The flattop duration of the gradient signal we considered was
long enough for the eddy currents to decay to nearly zero within
this period. But for the signal with shorter flattop duration or for
shorter interpulse signal sequences the eddy current might not
decay to negligible value. In that case, the added effect of the
remaining eddy currents before each new pulse would be required
to consider in the simulation. Because of system propagation
delays, the flattop duration was slightly longer than the designed
signal durations. In the simulation, we considered the nominal sig-
nal durations.

In our computation of inductive coupling between the Z-gradi-
ent coil and any subdomain, we solved the analytical formula of
solid angle for the circular coil patterns considering all three
dimensions. The same formula can be implemented for the cylin-
drical Z-gradient coil with a small modification [22] in the
approach to formulating the inductive coupling equation. As an
example, in our study case the field variables x and y are variables
and z is constant, since the upper or lower brass plates of the RF
shielding box is parallel to the planar gradient coils (parallel to



Fig. 10. Secondary transient magnetic fields along the (a) Z-axis, (b) X-axis, and (c)
Y-axis in the ROI as a result of Z-gradient-induced eddy currents in the RF shielding
box.

Fig. 11. Eddy current distribution along the X-axis induced by X-gradient coil. In
accordance with the field response of the X-gradient coil, the distributed eddy
currents were found to be nearly zero at the center of the brass plate and increasing
or decreasing values on opposite sides from the center.

Fig. 12. Eddy current transient response induced by X-gradient coil. Here responses
are given for few subdomains located at different position on the X-axis.

Fig. 13. The X-gradient coil generated eddy current field is illustrated here for few
points along the X-axis. X-gradient generated eddy field decays faster than the Z-
gradient induced secondary magnetic field.

Fig. 14. Linear secondary magnetic field induced by X-gradient coil.
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the X–Y plane). In case of cylindrical or ellipsoidal RF shielding box
or any other conducting structures, all of the field variables (x, y,
and z – which are different from the variables or parameters that
define the coil geometry) would be variable. In the calculation of
magnetic flux linkage between gradient coils (Gz or Gx coil) and
conducting structure of cylindrical or ellipsoidal shape we have
to consider this issue and define the field variables according to
the geometry of the eddy current conducting structure. The solid
angle expression would remain the same as it is for the case of
rectangular cubic RF shielding box.

In case of Gx coil solid angle calculation we followed a segmen-
tation approach by dividing the area of each coil into several
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rectangular segments and implemented solid angle calculation for-
mula for a rectangular section [21]. We have found this calculation
approach faster in terms of computer simulation and mathemati-
cally less complex. In case of cylindrical X- or Y-gradient coil we
can take the projection of the area bounded by a cylindrical loop
on a plane and can easily implement the rectangular segmentation
approach to formulate the analytical expression for the solid angle.
Ref. [31] divides the curvature of the coil into several line segments
and approximates the solid angle as the angle of a polygon. This
approach can also be implemented for cylindrical gradient coil
solid angle calculations.

In this work, we did not simulate the secondary magnetic fields
generated by eddy currents in the magnetic pole or yoke. The per-
meability of the ferromagnetic materials does not remain constant
rather varies in accordance with the hysteresis response of the
material. In the coupled circuit approach the calculation of self-
and mutual inductances of the subdomains and the inductive cou-
pling between the coil and subdomains all include permeability as
a constant which is not the case for ferromagnetic materials [29].
For this reason it would be needed to model the permeability vari-
ations in the hysteresis curve [32] and formulate inductance calcu-
lations accordingly. We hope to consider this study in our future
works. As the magnetic pole or yoke is much further from the
ROI, the eddy currents in those components have a smaller impact
on the ROI. This is clearly shown in the experimental results in
Fig. 15. In addition, there were slight variations in the magnitude
of eddy current fields between simulation and experiment (see
Fig. 7). In the simulation, we have not considered the coupling
effect between the eddy current conducting structures. Also there
might have some nonlinear eddy current responses that we plan to
analyze in our future works. The stepper motor has a positioning
accuracy of 0.1 mm, which can affect the exact positioning of the
NMR probe in different positions, but we still found good similarity
between our simulation and the experimental results.

In the coupled circuit approach, we found that there was no
strict rule in determining the sublayer thickness, although it is gen-
erally considered that it should be as thin as possible compared
with the skin depth (d) of the corresponding signal frequency. Ide-
ally, it should be infinitely thin. It has been suggested [13] that the
thickness should be less than one-fifth of d, whereas in Ref. [12] the
thickness considered was less than one-third of the skin depth. The
reason for these considerations was that the self-inductance for-
mulas considered in these papers do not include the thickness of
each subdomain. We have implemented a self-inductance formula
that includes thickness to accommodate the finite thickness of
each subdomain. We found that a change in thickness has a certain
effect on the transient response of eddy current—amplitudes and
time constants show a slight variation for different thicknesses.
To consider the skin effect more rigorously, we considered the
thickness of each sublayer to be less than one-tenth of the skin
Fig. 15. Eddy current fields as a result of eddy currents induced in components of
the MRI system other than the local RF shielding box.
depth, and found our simulation results to be in good agreement
with the experimental results.

5. Conclusion

We performed eddy current simulation of an open MRI system
by implementing new approaches to the coupled circuit numerical
analysis method. Eigen matrix techniques for solving matrices of
differential equations were implemented to speed up the calcula-
tion. Solid angle approach was implemented in the calculation of
the coupling relations between the gradient coils and any other
eddy current conducting structures that induce eddy currents.
We also conducted FID measurements of eddy fields and compared
these results with the simulation results. A good agreement was
found between the simulation and the experiment. Our approach
is fast and efficient, and can be implemented to analyze eddy cur-
rents for any MRI system. Although the effect of secondary fields
due to eddy currents in the local shielding box was larger than
the fields due to eddy currents in other components, in future work
we intend to calculate these fields as well.

Appendix A. Self- and mutual inductances of subdomains

The self-inductance of a subdomain is given by [28, pp. 313–
314]

l0

2p l Log
2l

0:2235ðt þ aÞ

� �
� 1þ 0:2235ðt þ aÞ

l

� �
;

where l0 is the magnetic permeability, l is the length, a is the width,
and t is the thickness of each subdomain.

The mutual inductance between the subdomains was computed
by the following expression [28, p. 316]:

l0

2p
l Log

l
d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

d2

s0
@

1
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

l2

s
þ d

l

2
4

3
5:

Here, d is the geometric mean distance between subdomains, which
is equal to the distance between the centers.

Appendix B. Solid angle calculation for Z-gradient coil pattern

Following the work of Paxton [17] and Galiano and Pagnutti
[19], we calculated the solid angle formula for the circular-type coil
for three dimensions. The basic equation of solid angle formulation
can be expressed as [17]

X ¼
Z

n � ds
z2 ;

where ds is the infinitesimal area of the coil and n � ds is the area of
the projection of ds onto the plane perpendicular to z, as shown in
Fig. B1. As a starting point, we took an expression derived from the
equation given in [22]. The expression that describes the solid angle
subtended by a circular coil of radius r at the center of a sphere is:

X ¼ 2pð1� cos hÞ;

where h represents the apex angle and cosh can be expressed from
Fig. B1 as zffiffiffiffiffiffiffiffiffi

z2þr2
p . We can also express the above equation as

X ¼ 2p 1� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2
p

� �
:

To obtain an expression for the solid angle along the X-axis, two
factors must be taken into account: first, the point at x is now at a
distance of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2
p

from the center of the coil, and second, from
this viewpoint the coil appears to be skewed at an angle of h1 with



Fig. B2. Geometric representation of a solid angle calculation in the X–Y plane. The
dotted schematics represent the inclinations of the coil to account for the projection
of the solid angle considering any point in the X–Y plane. h1 and h2 are the
projection angles for any point along the X- and Y-axis, respectively, and ab and bc
are the distances from the center along the X- and Y-axis, respectively.
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respect to the normal (see the black dashed lines in Fig. B2). If we
take the projection (cos h1) of the skewed coil at the original posi-
tion of the coil, we need to multiply zffiffiffiffiffiffiffiffiffi

z2þx2
p with the above equation.

The equation along the X-axis then becomes

X ¼ 2p 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ r2
p

 !
� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ x2
p :

Now, if we skew the X-skewed coil along the Y-axis again (as

shown by the red circle in Fig. B1), z will become
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2

p
and we have to multiply the projection (cos h2) of the Y-skewed

coil,
ffiffiffiffiffiffiffiffiffi
z2þx2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þx2þy2
p , with the above equation (see Figs. B1 and B2). There-

fore, the final equation can be expressed as

X ¼ 2p 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2 þ r2

p
 !

� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2

p ;

or X ¼ 2p zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2

p � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2 þ y2 þ r2

p
 !

:

Fig. C1. Geometry for the calculation of solid angle subtended by a rectangular
section ABCO at a distance h on the Z-axis.
Appendix C. Solid angle calculation for planar X- or Y-gradient
coil pattern

The solid angle of Gx coil is calculated by following the research
work done by Gotoh and Yagi [21] for a rectangular slit. At first we
will explain in brief on the solid angle of a rectangle at a point on Z-
axis. Fig. C1 shows the schematic of solid angle subtended at P(0, 0,
h) by a rectangle ABCO with sides a and b. The solid angle sub-
tended by this rectangle at the point P is represented by [21],

X ¼ h
Z a

0
dx
Z b

0

dy

ðx2 þ y2 þ z2Þ
3
2
:

The solution of this double integral has been given as [21],

X ¼ tan�1 ab

ða2 þ b2 þ h2Þ
1
2
:

Now to consider solid angle of a rectangle at any point, let us
consider solid angle subtended at an arbitrary observation point
P(xp, yp, zp) by the rectangle B0EDC as (see Fig. C2). The solid angle
can be calculated by

XB0EDC ¼ XOAED �XOAB0C :

The formula will become as:

XB0EDC ¼ tan�1 ðx1 � xpÞðy2 � ypÞ

zp½ðx1 � xpÞ2 þ ðy2 � ypÞ
2 þ zp�

1
2

� tan�1 ðx1 � xpÞðy1 � ypÞ

zp½ðx1 � xpÞ2 þ ðy1 � ypÞ
2 þ zp�

1
2
:

Fig. B1. Geometric representation of the solid angle of a circular coil. Here, h is the
apex angle of the solid angle subtended at a distance r0 by a circular coil of radius r.

Fig. C2. Geometry for the calculation of solid angle subtended by an arbitrary
rectangle at any field point P(xp, yp, zp).



Fig. C3. Rectangular segmentation approach in the calculation of solid angle
subtended by the X- or Y-gradient coil. Here half of the area of a coil is divided into
several rectangular sections. The total solid angle would be twice of the solid angle
subtended by this portion in first quadrant.
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Now, we can consider the portion of a Gy coil (we have consid-
ered Gy coil pattern as its position would be more realizable to
explain this approach) in first quadrant (arc NH0B0 in Fig. C3) as a
combination of several rectangular sections. Here, solid angle of
the arc B0F0N will be

XB0F 0NC ¼ ðXOEE0D �XOERCÞ þ ðXFF 0GO �XFPDOÞ þ ðXOHH0I �XHQGOÞ:

Total solid angle of the Gy coil (arc MNB0) will be double of the
above equation

XTotal ¼ 2XB0F 0NC :

In this fashion we can divide the arc of any gradient coil into
enough rectangular sections and calculate the solid angle with
some approximations.
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