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Abstract
The screening current induced in a bulk superconductor presents a critical problem for gradient
coil design because it gives rise to undesirable effects on the gradient field: namely, a decrease in
the efficiency and a distortion of the field. In this paper, a new coil design method for the bulk
magnet is proposed using the finite-difference method (FDM) and the target-field method. The
calculation using the FDM was implemented with the boundary conditions of the bulk magnet.
Transverse and longitudinal coils were designed and fabricated for a high-temperature
superconducting bulk magnet. The calculated results of the efficiency and the nonlinearity
distribution of the gradient field agreed well with the measured results.

Keywords: magnetic resonance imaging, gradient coil, screening current, high-temperature
superconducting bulk magnet

1. Introduction

A strong and stable magnetic field is required to polarize the
nuclear spins for nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI). In most cases, NbTi
superconducting magnets are used to generate the magnetic
field. Recently, high-temperature superconducting magnets
[1–5] have received increased attention because of recent
helium shortages.

A high-temperature superconducting (HTS) bulk magnet
is a promising magnet for NMR/MRI [4, 5]. In 2011, Ogawa
et al demonstrated MRI using a bulk magnet comprised of
YBCO bulk superconductors (critical temperature Tc = 92 K)
operated at 4.7 T without liquid helium [5]. In that paper, they
showed the feasibility of the magnet by performing imaging
experiments with a voxel size of 50 μm3.

Recently, some papers have addressed a problem con-
cerning the fact that the magnetic field induced by shim and
gradient coils comes to be shielded as a result of the Meissner
effect [6–9]. In 2009, Harn et al reported that the field
induced by superconducting shim coils installed outside the
HTS magnet using (Bi,Pb)2Sr2Ca2Cu3Oy (Bi2223) super-
conductor tapes was distorted by the shielding current [6]. In

this paper, significant degradation of the current efficiency in
shim coils and unexpected nonlinear behavior of shim ciols
were observed. The degradation of the efficiency in shim coils
with the (RE)Ba2Cu3O7x NMR magnet was also reported by
Yanagisawa et al in 2014 [7]. To reduce the degradation of
the shim coil’s performance, Ahn proposed to use room
temperature (RT) shim coils installed inside the HTS magnet
using GdBa2Cu3O7 (GdBCO)-coated conductor tapes [8]. In
2013, we reported on the shielding effect on gradient coils
installed in the RT bore of the bulk magnet, as well as on the
magnet using HTS tapes [9]. In this paper, the decrease of
current efficiency of the gradient coils was observed when the
bulk magnet was cooled below Tc.

When a type-II superconductor such as YBCO is cooled
below Tc, the magnetic flux below the lower critical field is
expelled as a result of the Meissner effect. As a result, the
shielding current (also called the screening current) is induced
on the surface of the bulk superconductor to cancel the flux
inside [10, 11]. Therefore, the flux induced by the gradient
and shim coils is distorted. In this case, it becomes difficult to
design the gradient coil patterns in such a way as to generate
the target gradient field.
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Gradient coils must be designed so as to generate a
desired linear field gradient in the x-, y-, and z-directions. The
nonlinearity of the gradient field gives rise to distortion in the
acquired MR images. Furthermore, the magnitude of the
gradient is also an important factor in determining the reso-
lution of the images. These factors are in a trade-off rela-
tionship with each other; therefore, a large number of studies
have been performed on the gradient coil [12]. However, no
study has ever tried to develop the gradient coil for an HTS
magnet, such as the bulk magnet, because of the shielding
effect mentioned above.

In this paper, we propose a new gradient coil design
approach using the target-field method [12–17] and the finite-
difference method (FDM) [18, 19] for the bulk magnet. An
imaging experiment using a lattice phantom is performed with
the gradient coil designed in this study to demonstrate the
validity of our approach.

2. Theory

In this study, the current density of the gradient coil is
assumed to be the linear combination of the set of square
currents. Then, the combination coefficients will be obtained
using the target-field method. The magnetic field distributions
produced by the square currents can be calculated using the
FDM to consider the shielding effect, as described in
section 2.2.

To evaluate the gradient coil performance, the gradient
field was measured using the phantom-based method. The
gradient field can be estimated from the pixel distortion in the
MR image acquired using the designed gradient coils, as
described in section 2.3.

2.1. Target-field method

The target-field method is one of the design methods for the
gradient coil; it was first proposed by Turner [12, 13]. The
main problem associated with this approach is that it is dif-
ficult to design a current density distribution on a finite
region, because a Fourier transform is required to derive the
current distribution of a coil. There is no guarantee that the
distribution will converge on the desired finite region. In this
case, it becomes difficult to fabricate the coil [14–16]. To
overcome this problem, a method based on the linear com-
bination of finite Fourier series was proposed [16, 17].

In this study, the current density for the gradient coil was
derived using the linear combination of the set of square
currents on the cylindrical surface, as shown in figure 1,
which are not orthogonal to each other. At first, the magnetic
field distributions Qn induced by the square currents Jn—
which are smoothed by convolution with Gaussian kernels—
were calculated using the FDM (see section 2.2). At this
stage, the magnetic field Bs induced by the gradient coil can
be expressed as follows:

cB Q , (1)s

i

n

i i∑=

where cn denotes the linear combination coefficients. Ideally,
the target field B(t) is equal to Bs as follows:
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where Bm
t( ) and Qmn denote the values of B( t) and Qm at the

mth point. In this case, cn can be obtained by calculating the
inverse matrix of Qm as follows:
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However, in the case of m> n, the equation represents an
ill-posed problem and must be solved using Tikhonov reg-
ularization as follows:
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Figure 1. The set of square currents for the cylindrical gradient coil.
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where α is the regularization parameter and ||2 denotes the L2
norm operator. The current density Js of the gradient coil can
be expressed as follows:

cJ J . (6)s

i

n

i i∑=

Finally, the winding pattern can be obtained by using the
stream function method [12]. Because the current density of
the coil is continuous, as expressed in equation (7), there
exists a stream function S that represents the streamlines of
current flow:

J 0. (7)s ⋅ =

Therefore, S can be expressed as follows:

J
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where Js
z( ) is the z-component of Js. Finally, S can be derived

by solving the integral below:
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The winding patterns are then approximated as contour
lines of S.

2.2. Magnetic field calculation using the finite-difference
method

There are some approaches, such as the finite-element method
and boundary-element method, to estimate the current density
distributions for gradient coils. The FDM-based method was
first proposed by Zhu et al to achieve flexible and straight-
forward coil optimization. In this study, we used the FDM
approach to consider the Meissner effect.

Figure 2 shows the boundary conditions and the geo-
metric condition of the square currents used for the FDM
calculation.

In this study, gradient coils are located in the RT bore of
the bulk magnet. Therefore, the vector potential Ai and the
magnetic field Qi generated by the square current at the ith
position and the boundary conditions can be expressed by the
following equations:
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where R1 and R2 denote the inner and outer radii of the bulk
superconductors from the z-axis, Ji denotes the current
density distribution of the square currents in the bulk magnet,
and μ0 and μ1 denote the permeability of free space and of the
superconductors, respectively. However, it is complicated to
solve the above equations when taking into consideration the
Neumann boundary condition. In this study, we assumed that

the London penetration depth (typically, a few hundred
nanometers) is much smaller than the thickness of the bulk
magnet (R2−R1). Moreover, the bulk superconductors can be
assumed to be uniform materials whose μ1 is zero. Therefore,
the boundary conditions can be expressed as follows:
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In this study, this equation was solved using the FDM.
The magnetic vector potential Ai in the free space can be

defined as follows:
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When the z-axis is parallel to the main field of the magnet,
the x- and y-components of Ai must be obtained in order to
derive the z-component of Qi by solving the following
equations:

A j

A j , (13)
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where Aix and Aiy are the x- and y-components of Ai, and jix
and jiy are the x- and y-components of Ji.

At this stage, these equations are discretized according to
the definition of the partial derivative, given below:
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Figure 2. The boundary conditions used in this study.
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The second derivative of Aix is defined as follows:
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The second derivative can be approximated with the
following equations:
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The vector potentials can be solved using the linear
iterative method [18], given by:
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where Aix
k( ) and Aiy

k( ) are the successive approximations at
iteration k. The iteration is stopped if the maximum values of
A Aix

k
ix

k( 1) ( )−+ and A Aiy
k

iy
k( 1) ( )−+ are less than the toler-

ance. Finally, Qi can be obtained by using equation (12).

2.3. Gradient field estimation using the lattice phantom

The magnetic field induced by the gradient coil was estimated
by using the phantom-based method [20, 21]. The gradient
fields Gx, Gy, and Gz induced by the x-, y-, and z-gradient
coils at the spatial coordinates (x, y, z) are defined as follows:
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where gx, gy, and gz are the field gradients for the x-, y-, and z-
gradient coils, respectively; Δgx, Δgy, and Δgz are the
nonlinear components of the field induced by the x-, y-, and
z-gradient coils, respectively.

The coordinates (u, v, w) in the MR image with the
readout gradient along the z-axis can be expressed as follows:
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where ΔB0 is the inhomogeneity of the magnetic field.
The nonlinear components of the gradient field along the

phase-encoding direction can be obtained by calculating the
distortion of the MR image as follows:
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Therefore, Δgx and Δgycan be estimated by fitting the
pixel-shift data.

Finally, the nonlinearity distributions of the gradient field
for gx and gy are defined as follows:
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In addition, the field gradient [mT/m] can be measured
using a phantom with known geometry [22]. For example, gx
is calculated using the equation:

g
L t

2
, (22)x

x x

π
γ

=

where γ is the gyromagnetic ratio, Lx is the size of the
phantom, and tx is the sampling rate of the sequence. The
gradient efficiency [mT/m/A] is calculated by dividing the
field gradient by the current value for the readout gradient
(gradient current).

3. Materials and methods

The MRI system used in this study consists of a bulk magnet
(B0 = 4.74 T, RT bore diameter = 23 mm), an MRI console
(MRTechnology, Japan), and an MRI probe. The bulk magnet
is comprised of six vertically stacked (120 mm high) annular
bulk superconductors (outer diameter (OD) = 60 mm) made of
c-axis-oriented single-domain EuBCuO crystals (Tc = 92 K),
as shown in figure 3(a). The inner diameter (ID) and the
thickness of both the upper and lower superconductors were
28 and 23 mm, respectively. The ID and the thickness of the
middle four superconductors were 36 and 18.5 mm, respec-
tively. The probe was installed in the RT bore of the bulk
magnet. The probe consisted of a twisted-loop radio fre-
quency (RF) coil (ID = 8.1 mm), gradient coils, and an RT
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shim coil. The diameters of the x-, y-, and z-gradient coils
were 21.5, 22.0, and 22.5 mm, respectively. The shim coil
(OD= 20.5 mm, ID = 19.0 mm) was located inside the
x-gradient coil, as shown in figure 3(b).

In this study, the inner (R1) and outer (R2) radii used in
the simulation of the boundary conditions for the FDM were
18 and 30 mm, respectively. Forty-nine sets of Gaussian
smoothed (3 mm)2 square currents were used as the basis
function for the target-field method, as shown in figure 4. The
regularization parameter of α was determined by using a trial-
and-error process. The gradient fields (target volume =ϕ 9,
10 mm height) along the x-, y-, and z-directions were used as
the target field.

The longitudinal (z-gradient) and transverse (x- and y-
gradients) gradient coils were designed using our method.
The longitudinal coil was fabricated on a plastic tube
(thickness = 0.1 mm) using polyethylene-coated Cu wires
(0.3 mm diameter). The transverse coil designed in this study

was fabricated by cutting the winding patterns on copper
sheets (thickness = 0.1 mm) using the commercial CNC cutter
(Silhouette Cameo, Graphtech, Japan).

To verify our gradient coil design approach, the gradient
efficiencies and the nonlinearity distributions were calculated
and measured. The gradient efficiencies (mT/m/A) and the
nonlinearity distributions for the x- and z-gradients were
calculated using the FDM. The values were also calculated
using the Biot–Savart law without the boundary conditions to
show the shielding effect. They were then compared with the
efficiencies and nonlinearity distributions measured using the
three-dimensional lattice phantom (diameter = 9.0 mm,
height = 14.0 mm), as shown in figure 5. The phantom was
acquired using the three-dimensional spin echo (3DSE)
sequence (TR/TE = 100/10 ms, matrix size = 1283, voxel
size = 100 μm3). The distortion of the MR images was esti-
mated by fitting the pixel-shift data with a third-order

Figure 3. (a) Schematic diagram of the bulk magnet, which consists of six stacked superconductors. (b) Schematic diagram of the probe,
which consists of the gradient, shim, and radio frequency (RF) coils.

Figure 4. Basic functions comprised of 49 square currents used for
the target-field method.

Figure 5. (a) A schematic diagram of the lattice phantom. (b) A
fabricated phantom.
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polynomial. The nonlinearity distributions and the gradient
efficiencies were calculated using equations (21) and (22),
respectively.

In addition to the gradient efficiency and nonlinearity, the
current dependence of the field gradient strength is the
essential factor for the MRI. This is because the encoding
scheme for usual MRI systems is implemented based on the
assumption that the field gradient strength is proportional to
the applied gradient current. If this assumption is not satisfied,

the MR images will suffer from signal artifacts and distortion.
To show the current dependence of the field gradient strength,
the field gradients (mT/m) for the x- and the z-gradient coils
were measured with gradient currents of ±3.125, ±2.5,
±1.875, ±1.25, and ±0.625 A. The values were calculated
using a 3DSE sequence (TR/TE= 100/10 ms, matrix size =
1283) and a sphere phantom with a diameter of 6.4 mm.

4. Results and discussion

Figures 6(a) and (b) show the transverse and longitudinal
gradient coil winding patterns. The arrows in figures 6(a) and
(b) show the current flow in the coils. Figure 6(c) shows the
fabricated gradient coil according to the design.

Table 1 shows the calculated and measured gradient
efficiencies for the x- and z-gradient coils. The second and
third columns of the table show the values of the efficiencies

Figure 6. (a) Transverse and (b) longitudinal coil designed in this study. (c) Fabricated gradient coils according to the coil design of (a)
and (b).

Figure 7. MR images of the lattice phantom (shown in figure 6). Red dashed lines show the area of the target field used in this study.

Table 1. The calculated and measured gradient efficiencies.

Biot–Savart
[mT/m/A]

FDM
[mT/m/A]

Measured [mT/
m/A]

Transverse (Gx) 55.6 51.6 52.0
Longitudinal (Gz) 84.0 72.4 74.0
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calculated using the Biot–Savart law and the FDM, respec-
tively. The values in the fourth column were measured using
the lattice phantom. As clearly shown in the second and
fourth column, the calculation results without the boundary
conditions were higher than the measured values. On the

other hand, the efficiencies calculated using the FDM agreed
well with the measured values.

Figure 7 shows the MR images of the lattice phantom,
shown in figure 6(c), doped in the CuSO4 water. The phantom
was acquired without significant distortion inside the target
volume, as illustrated by the red dashed lines.

Figure 8 shows the nonlinearity spatial distribution of the
x-gradient coil, calculated using the FDM. The maximum
nonlinearity of the field was 17.4%.

Figure 9 shows the nonlinearity spatial distribution
measured using the lattice phantom. The maximum non-
linearity calculated from the measured distribution was
16.8%. The calculated and the measured distributions were in
reasonable agreement with each other.

As mentioned above, the field gradient strength should be
proportional to the applied current to achieve the correct
encoding. Figure 10 shows the current dependence for the
field gradient of the x- and z-gradient coils. The solid lines
show the regression lines for the x- (R= 0.999) and z-gradient
(R = 0.999) coils. The field gradient strength varies linearly
with the gradient current.

The other solution to avoid the shielding problem is to
use the active shielding coil [23]. However, additional space
for the coil will be required. In this case, it is challenging to
install the coil in the magnet with a small bore size, such as
the bulk magnet.

The z-gradient coil winding pattern shown in figure 6(b)
seems irregular, because the design algorithm did not consider
the symmetricity of the winding pattern in this study.
Therefore, it is possible to design simpler patterns using the
symmetry condition. In addition to this, the larger number of
square currents will give smoother winding patterns. Fur-
thermore, the gradient coils developed in this paper were not
exactly as designed, owing to fabrication error. This is
because the fabricated coils and copper wires were very small,
and, therefore, the coil design becomes sensitive to the fab-
rication errors. The error gives rise to undesirable components
of the field, such as asymmetricity of the distribution.

The nonlinearity of the gradient coils developed in this
study is larger than commercially available gradient coils.
Because of the small bore diameter, there are some limitations
in designing the gradient coils to achieve the practical design,

Figure 8. The linearity of the transverse gradient field in the (a) zx-
plane at y = 0.0 mm; in the (b) zy- plane at x= 0.0 mm. Data were
calculated using the FDM.

Figure 9. The linearity of the transverse gradient field in the (a) zx-
plane at y = 0.0 mm; in the (b) zy-plane at x= 0.0 mm. Values were
measured using the lattice phantom.

Figure 10. Current dependence for the field gradient of the x- and z-
gradient coils.
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such as the coil diameter and the number of wire turns. In the
future, these limitations will be solved by using larger bulk
superconductors, although it is still difficult to make large
superconducting crystals.

5. Conclusion

In this paper, we proposed a new gradient coil design method
for the bulk magnet using the target-field method and the
FDM. The winding patterns for the transverse and long-
itudinal coils were designed and developed by considering the
boundary conditions. The nonlinearity distribution and the
efficiency of the coils, measured using the lattice phantom,
were in good agreement with the calculation results. In
addition to this, a proportional relationship between the field
gradient strength and the gradient current was observed.

We conclude that these results demonstrate the accuracy
and the effectiveness of our approach. Our approach enabled
a gradient coil design under the condition of the flux shielding
property. As a result, optimization of various types of gradient
coils for the bulk magnet will be available. Although this
study offered experiments concerning the bulk magnet, we
hope that our approach will contribute the gradient coil design
for other types of HTS magnets.
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