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Amagnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has
been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was
developed to run according to pulse sequences used in experiments. Experiments and simulations were
performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences,
namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and
gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed
using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed
using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be repro-
duced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice
imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we
concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI
research and development.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Various magnetic resonance imaging (MRI) simulators, which
reproduce MRI experiments using computers, have been proposed
since the 1980s [1–15]. Among them, several MRI simulators were
designed to run in parallel to accelerate the processing speeds
[7,11–15]. However, mainly because of their inadequate processing
speed, they have not been widely used in practical research and
development areas such as pulse sequence development or image
artifact analysis.

There are several problems with these proposed MRI simula-
tors. The first is that it is difficult to simulate the large matrix
(e.g., 2563) images required for three dimensional (3D) or multi-
slice image acquisitions. To overcome this problem, the use of PC
clusters [7,11] and even a supercomputer [12] has been proposed,
but these are not fully acceptable solutions for large matrix 3D MRI
simulations because the processing speeds were not sufficient. In
recent years, the rapid development of graphic processor units
(GPUs) has made it possible to use highly parallel data processing
(>1000 streams) in small laboratories and even for personal use
[16]. Because MRI simulator calculations are well suited to highly
parallel computing, MRI simulators utilizing GPU boards are
expected to overcome the above problems [13,14]. In 2014, Xan-
this et al. published a GPU-based MRI simulator (MRISIMUL) and
demonstrated 31-228 times processing speed compared to CPU-
based MRI simulations [13]. However, the comparison of the pro-
cessing speed was relative one between the GPUs and the CPUs,
and no absolute processing speed measured in FLOPS (floating
operations per second), essential to numerical simulations, was
presented.

A second problem is that it is difficult to reproduce a precise
nuclear magnetic resonance (NMR) signal for continuous objects
using a finite number of isochromats. In other words, if the nuclear
magnetization of a voxel is calculated using a small number of
isochromats, pseudo-echoes are frequently produced, resulting in
observable image artifacts. To overcome this problem, a technique
to use a large number of isochromats comparing to the number of
voxels of the reconstructed image has been proposed. However,
because in fast gradient echo sequences the coherence of the
nuclear magnetization over successive excitation pulses makes
sinusoidal modulation of the transverse magnetization within a
voxel, division of a voxel into many subvoxels along the readout
direction is a useful and straightforward approach to increasing
the number of isochromats. A third problem is that it is difficult
to compare experimental results with those of their simulations
because there is no useful interface between them. One straightfor-
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ward solution to this problem is to develop the MRI simulator to
run according to the experimentally used pulse sequences.

In this study, we developed a GPU-optimized MRI simulator for
large matrix 3D images with easily adjustable numbers of subvox-
els, measured the absolute processing speed in FLOPS, and quanti-
tatively compared the processing speed with that of MRI
simulations performed using the latest CPUs (two 18-core Xeons).
Because our simulator was developed to run according to experi-
mentally compatible pulse sequences, we demonstrated its useful-
ness by comparing MRI simulations with corresponding MRI
experiments using identical pulse sequences.

2. Materials and methods

2.1. Formulation of the simulator

In this paper, the MRI simulation was formulated using the
Bloch equation [17], and the molecular diffusion effect for a one-
voxel object was calculated using the Bloch–Torrey equation [18].

The evolution of a nuclear magnetization vector

M
!¼ ðMx;My;MzÞT in a magnetic field B0ð r!; tÞ is described in a
rotating frame of reference using the Bloch equation as

dM
!
dt

¼ cM
!� Be

!�
Mx=T2

My=T2

ðMz �M0Þ=T1

0
B@

1
CA; ð1Þ

where c, Be
!
, M0, T1, and T2 are the gyromagnetic ratio of the

nucleus, effective magnetic field in the rotating frame of reference,
longitudinal magnetization in the thermal equilibrium state, longi-
tudinal relaxation time, and transverse relaxation time, respec-

tively. Be
!

comprises the inhomogeneous magnetic field, the
gradient magnetic fields, and the radio-frequency (RF) magnetic
fields. It is expressed as

Be
!ðx; y; z; tÞ ¼ DBzðx; y; zÞẑþ ðGxðtÞxþ GyðtÞyþ GzðtÞzÞẑ

þ B1xðtÞx̂þ B1yðtÞŷ; ð2Þ
where DBzðx; y; zÞ is the z component of the inhomogeneous mag-
netic field, GxðtÞ , GyðtÞ, and GzðtÞ are the magnetic field gradients,
and B1xðtÞ and B1yðtÞ are the two orthogonal components of the RF
magnetic field in the rotating frame of reference.

When an RF pulse of arbitrary shape and phase is applied, the
evolution of a magnetization vector can be approximated using
the successive application of short square RF pulses of Dt duration.
If a rotation vector ðvx;vy;vzÞ is defined as

ðvx;vy; vzÞ ¼ cBe
!
Dt ð3Þ

and h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxÞ2 þ ðvyÞ2 þ ðvzÞ2

q
; ð4Þ

the rotation matrix R for the short square pulse can be written using
Rodrigues’ rotation formula as
R ¼ 1
h2

v2
x ð1� cos hÞ þ h2 cos h vxvyð1� cos hÞ � hvz sin h vxvzð

vxvyð1� cos hÞ þ hvz sin h v2
yð1� cos hÞ þ h2 cos h vyvzð

vxvzð1� cos hÞ � hvy sin h vyvzð1� cos hÞ þ hvx sin h v2
z ð1

0
BB@
Therefore, the evolution of the magnetization vector for an arbi-
trary RF pulse can be calculated using successive applications of
the rotation matrix R.

When there is no RF pulse, the evolution of the magnetization
vector can be written as
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where Dt is a time difference, E1 ¼ expð�Dt=T1Þ, E2 ¼ expð�Dt=T2Þ,
and the angle

u ¼
Z tþDt

t
ðBe
!Þzdt ð7Þ

To summarize the above formulation, our MRI simulation is cat-
egorized into two cases, namely with and without an RF pulse, and
the large number of isochromats in the voxels are calculated
according to a time chart of the pulse sequences. The NMR signal
from the imaging object can be obtained by calculating the sum
of the transverse components of the isochromats during the
data-acquisition periods. The MR image can then be obtained
through image reconstruction using a set of NMR signals obtained
from the above calculation.

Whenmolecular diffusion effects cannot be neglected, the Bloch
equation should be replaced by the Bloch–Torrey equation [18] as

dM
!
dt

¼ cM
!� Be

!�
Mx=T2

My=T2

ðMz �M0Þ=T1

0
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CAþ Dr2M

!
; ð8Þ

where D is the isotropic diffusion coefficient. Although molecular
diffusion effects were described using a more general formula in
the original Bloch–Torrey equation, we use the simplest form to cal-
culate signal attenuation in a voxel. The above equation was calcu-
lated using the following approximation for a voxel as

D
@2M

!
i

@x2
¼ D

M
!

iþ1 þM
!

i�1 � 2M
!

i

ðDxÞ2
; ð9Þ

where i is the index of the subvoxel in the voxel and Dx is the width
of the subvoxel.

2.2. Computer system for the MRI simulation

In this study, we used two GPU boards (GTX 1080, nVIDIA, Santa
Clara, USA) installed in a PC (CPU: Core i7-5960X, clock frequency:
3.0 GHz, RAM: 64 GB) running under the Windows 10 operating
system (Microsoft, Seattle, USA). The GTX 1080 has 2560 single-
precision CUDA (Compute Unified Device Architecture) cores,
8 GB RAM, and a 1733 MHz clock frequency. Peak performance
for single-precision floating-point operations is 8873 GFLOPS at
the clock frequency of 1733 MHz. To compare the processing speed
with that of a CPU, we used a conventional workstation (CPU: Xeon
E5-2699v3 � 2, 36 cores, clock frequency: 2.3 GHz, RAM: 64 GB)
1� cos hÞ þ hvy sin h

1� cos hÞ � hvx sin h

� cos hÞ þ h2 cos h

1
CCA: ð5Þ



Fig. 1. Structure of BlochSolver. The input data are the numerical phantom, the
pulse sequence, and the system parameters. CUDA kernel function code, generated
automatically using the pulse sequence and the system parameters, is compiled to
execution code for the GPU using NVRTC (NVIDIA runtime compilation library). The
Bloch equation is integrated to calculate the NMR signal for the MR image.
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running under the Windows 10 operating system. We used Visual
C++ 2015 (Microsoft) and CUDA 8.0 (nVIDIA) for the development
of the MRI simulator.

2.3. Implementation of the simulation program

Fig. 1 shows the structure of the MRI simulation program devel-
oped in this study. The CUDA kernel function source codes for the
MRI simulation performed in the GPU boards are ‘‘automatically”
generated from the pulse sequence file, numerical phantoms, and
system parameters. Subsequently, the execution codes for the
GPU were generated using the NVIDIA runtime compilation library
(NVRTC). This automatic execution code generation mechanism
enabled our MRI simulator to be compatible with any experimen-
tally used pulse sequences. We named this program ‘‘BlochSolver.”

Fig. 2 shows the graphical user interface (GUI) of BlochSolver
developed for the input of numerical phantoms, system parame-
ters, and pulse sequences. The most significant input for the dialog
boxes shown in the upper right of Fig. 2 is the matrix size of the
numerical phantom. A voxel is further divided into subvoxels, the
number of which can be arbitrarily changed in the x, y, and z direc-
tions. The matrix size and the maximum number of subvoxels are
not restricted, provided the associated data matrices (described
later) can be stored in the GPU memory (16 GB). Although the
matrix size of the numerical phantom is independent of that of
the acquired image, it is convenient to use an identical matrix size
and adjust the number of subvoxels to describe the spatial changes
of the numerical phantom within the voxel.

The numerical phantom consists of a nuclear (proton) density
map, a T1 map, and a T2 map. These three maps are input as three
data files described in terms of single-precision floating-point
numbers. We do not include a diffusion coefficient map because
the diffusion effect drastically reduces the calculation speed. We
also omit a resonance frequency map because we use a static mag-
netic field map of the system parameters instead. The matrix size
of the numerical phantoms is multiplied by the number of
subvoxels and the values in the matrices are calculated using linear
interpolation of the original values.
The system parameters comprise a static magnetic field map
(B0), a transmission RF field map (B1 transmission), a reception or
sensitivity RF field map (B1 reception), and field gradient maps
(Gx, Gy, and Gz). These six system parameter maps are input as
six data files described using single-precision floating-point num-
bers with the same matrix size as that of the numerical phantom.
The matrix size of the system parameter maps is multiplied by the
number of subvoxels and the values in the matrices are calculated
using linear interpolation of the original values.

As described above, BlochSolver requires 12 3D data matrices
comprising three numerical phantoms, six system parameters,
and three magnetization components for the imaging object.
Therefore, if a large image matrix (e.g., 256 � 512 � 1024, includ-
ing subvoxels) is used, the total data size may exceed the GPU
memory size (16 GB). We have addressed this problem by using
the following technique. Because the voxel for which the proton
density is zero does not contribute to the NMR signal, the 3D image
arrays can be rearranged into one-dimensional arrays that exclude
such voxels. In this way, the memory size and processing time for
BlochSolver are significantly reduced. However, the size of the 3D
data matrices sometimes exceeds the GPU memory size (16 GB)
even if this memory and calculation time saving technique is used.
In such case, the MRI simulation was performed by partitioning the
3D data using the main memory of the PC (128 GB or more).

Fig. 3 shows an example of a pulse sequence used in this study.
The pulse sequence comprises two parts. The first part represents
global parameters such as TR, NX, and NR (see Fig. 3), which con-
trol the overall behavior of the sequence. The second part repre-
sents the time series of the events, such as the RF pulse, gradient
amplitude, and start of data acquisition [19]. The format of this
sequence was originally developed for a pulse programmer using
a digital signal-processor board with 100-ns resolution. It has been
used for many compact MRI systems developed in our laboratory
[20–24]. The same format has also been used for a 128-bit
parallel-communication pulse-programmer using a PC with a
1-ls resolution [25], which was used in the experiments in this
study. The sequence format includes many user-defined events
such as the RF pulse shape, RF pulse phase, and phase encoding
tables. BlochSolver reads this sequence file and performs the MRI
simulation according to the time series described in the file.

Fig. 4 shows signal acquisition windows that display real, imag-
inary, and absolute value NMR signals in real time during the MRI
simulation. This signal display window is very useful for the detec-
tion of any pseudo-echo signals and for adjusting the timing of the
pulse sequence.

The most time consuming or time critical part of the MRI sim-
ulation was summation of all the transverse components of the
magnetization vectors for NMR signal calculation performed at
every sampling point. The evolution of the spatially distributed
magnetization vectors were calculated highly in parallel in the
streaming multiprocessors (SM) of the GPU. However, the fast par-
allel summation of the transvers components of the isochromats is
not compatible with the fast parallel calculation of the evolution of
the isochromats because the memory size for the whole of the
isochromats is very large (e.g. 2563 � 4 � 3 bytes �200 MB) and
stored in the global memory (several hundreds of the clock time
for the memory access) of the GPU. In this study we developed a
special calculation technique that enabled both fast parallel calcu-
lation of the isochromat evolution and fast parallel summation of
the transverse components of the isochromats within the register
file (256 kB for each SM, no delay time for the memory access).

2.4. MRI system configuration

We used a home-built MRI system using a 1.5 T superconduct-
ing magnet. The superconducting magnet (JMTB–1.5/280/SSE,



Fig. 2. Graphical user interface (GUI) for the parameter inputs of BlochSolver. The dialog boxes shown on the right side of the GUI refer to the matrix size of the numerical
phantom, the numbers of subvoxels, field of view, proton density, T1 map, T2 map, B0 map, B1 transmission map, B1 sensitivity map, maps representing gradient field
nonlinearity, and gradient coil parameters. Dialog boxes written in red are mandatory and those in black are optional. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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JASTEC, Kobe, Japan) has a horizontal room temperature bore
(diameter = 280 mm, length = 521 mm) and a 160-mm-diameter
spherical homogeneous region (<50 ppm). We used two home-
built gradient coil sets with 220- and 87-mm-diameter inner bores.
The efficiencies of the gradient coils in the large-bore gradient coil
set were 0.787, 0.862, and 0.638 mT/m/A for the Gx, Gy, and Gz
coils, respectively. The efficiencies of the gradient coils in the small
bore gradient coil set were 4.48, 4.73, and 4.95 mT/m/A for the Gx,
Gy, and Gz coils, respectively. For the small bore gradient coil set, a
second-order shim coil set with a 122-mm-diameter inner bore
was used.

We used two home-built RF coils: a solenoid coil of 130-mm
diameter and 120-mm length and a linear-drive 8-leg birdcage coil
of 64-mm diameter and 64-mm length. The MRI console was con-
structed using a digital transceiver (DTRX-6, MRTechnology, Tsu-
kuba, Japan). The data-acquisition software was Samper 7D
(MRTechnology, Tsukuba, Japan) running under the Windows 10
operating system.

Fig. 5 shows the real MRI phantoms used for the MRI experi-
ments. Numerical phantoms were made to simulate the real MRI
phantoms using C++ programs. The matrix sizes for the numerical
phantoms corresponding to Fig. 5(a)–(d) were 256 � 256 � 16,
512 � 512 � 64, 256 � 256 � 32, and 256 � 256 � 512,
respectively.

When a cylindrical object (radius = R) with homogeneous
magnetic susceptibility li is placed in a uniform material with
homogeneous magnetic susceptibility le such that the cylindrical
axis is perpendicular to a homogeneous magnetic field B0 (parallel
to z), the component of the induced magnetic field Bz collinear with
the external magnetic field is

Bz ¼ B0 1� le � li

le þ li
R2 z2 � x2

r4

� �
; ð10Þ

where r2 ¼ x2 þ z2 [26]. When the phantom shown in Fig. 5(a) was
placed such that the cylindrical axis was perpendicular to the static
magnetic field, similar magnetic field distribution was produced.
However, because the susceptibilities of the CuSO4 water solution,
air, and the plastic bottle were unknown, we treated the coefficient
ðle � liÞR2=ðle þ liÞ as one adjustable parameter in the MRI
simulation.

Similarly, when a spherical object (radius = R) with homoge-
neous magnetic susceptibility li is placed in a uniform material
with homogeneous magnetic susceptibility le and a uniform mag-
netic field B0 (parallel to z) is applied, the component of the
inducedmagnetic field Bz collinear with the external magnetic field
is

Bz ¼ B0 1� le � li

2le þ li
R3 2z2 � x2 � y2

r5

� �
; ð11Þ

where r2 ¼ x2 þ y2 þ z2 [26]. When the phantom shown in Fig. 5(b)
was placed in a static magnetic field, a similar magnetic field



Fig. 3. Example of a pulse sequence text file describing an RF spoiled gradient-echo sequence (SPGR). The first 11 rows represents control parameters for the whole pulse
sequence: repetition time (TR), number of signal averages (NX), number of sampling points (NR), number of the first encoding step (N1), number of second encoding step
(N2), step size for the first encoding gradient (S1), step size for the second encoding gradient (S2), dwell time for signal sampling (DW), number of dummy scans before data
acquisition (DU), number of images for acquisition (NI), and NMR lock mode (NK). The 14 rows behind the first 11 rows represent the time series for the pulse sequence in
units of 100 ns. The first column shows the sequence event time written in the unit of second, millisecond, microsecond, and 100 ns. The second column shows kinds of
sequence events such as PH (transmitter RF pulse phase), RF (shape of the RF pulse), GX, GY, and GZ (gradient coil currents), and AD (acquisition start). <-v5 shows references
to external files that describe tables of RF phase values and gradient currents.
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distribution was produced. Again, because the susceptibility of the
CuSO4 water solution, air, and the plastic sphere were unknown,
we treated the coefficient ðle � liÞR3=ð2le þ liÞ as one adjustable
parameter in the MRI simulation.
2.5. B1 field distribution in the birdcage coil

When a birdcage coil is driven linearly, the direction of the RF
magnetic field (B1) is constant. The distribution of B1 can be
approximated by using eight linear currents on the cylindrical sur-
face of the birdcage coil (diameter = 64 mm) placed parallel to the
cylindrical axis [27]. Fig. 6 shows a 54-mm diameter B1 map calcu-
lated within the cylindrical region. This B1 map was used for MRI
simulation of the multislice imaging.
2.6. Comparison of GPU and CPU processing speeds

Processing speeds of the GPUs (GTX 1080 � 2) and CPUs (Xeon
E5-2699v3 � 2) for the MRI simulation were compared using an
identical MRI simulation; the matrix size was 256 � 256 � 32,
the number of subvoxels was 65, and the pulse sequence was the
3D RF spoiled gradient echo (SPGR) sequence (TR = 20 ms,
TE = 6 ms) [28].

The CPU programs were optimized using the OpenMP parallel
computing technique for the two 18-core Xeon CPUs, AVX
(advanced vector extension) 2 SIMD (single instruction multiple
data) parallel operations (256-bit parallel operations), implemen-
tation of a fast customized routine of trigonometric and exponen-
tial functions for the AVX 2, and local-loop size optimization for the
32 kbyte L1 cashe memory.
To compare the processing speeds between BlochSolver and the
GPU-MRI simulator previously reported [13], a typical 2D single
slice gradient-echo MRI simulation was performed using the iden-
tical number of isochromats (150 � 150 � 60).

3. Results

3.1. Susceptibility phantom

Fig. 7 shows cross-sectional images obtained by simulations
and experiments of the phantom shown in Fig. 5(a). Fig. 7(a)–(c)
show central cross-sections selected from the 3D image datasets
obtained by the simulation using the 256 � 256 � 16-voxel
numerical phantom and 1 � 1, 2 � 2, and 4 � 4 in-plane subvoxels.
The calculation times for the 3D image datasets were 2.28, 4.81,
and 15.20 s, respectively. Fig. 7(d) and (e) are the difference images
between Fig. 7(a) and (b), and between Fig. 7(b) and (c), respec-
tively. Fig. 7(f) is the central cross-section acquired with the exper-
iment. These images show that the intravoxel phase dispersion
caused by the inhomogeneity of the magnetic field can be
described by using an appropriate number of subvoxels.

Fig. 7 shows cross-sectional images obtained by simulations
and experiments of the phantom shown in Fig. 5(b). Fig. 8(a)–(c)
show typical cross-sections selected from the 3D image datasets
acquired with the gradient-echo sequence (TR = 200 ms,
TE = 48 ms, image matrix = 512 � 512 � 64). Fig. 8(d)–(f) show
corresponding cross-sections selected from the 3D image datasets
obtained by the simulation, using the 512 � 512 � 64-voxel
numerical phantom and 4 � 4 � 4 subvoxels. The total matrix size
including the subvoxels was 2048 � 2048 � 256 (= 1,073,731,824
or 1 Gigavoxels). Because the memory capacity required for this



Fig. 4. Signal display windows of BlochSolver. BlochSolver displays the NMR signal computed by the GPU in real time. The phase encoding steps, calculation TR, and elapsed
time are also displayed in real time. (a)–(d) are displaying NMR signals passing through the center of the k-space when the RF spoiled gradient echo sequence (TR = 20 ms,
TE = 6 ms) was applied to the phantom shown in Fig. 5(c) with the number of subvoxels = 1, 3, 5, and 17. When the number of subvoxels was insufficient (1–5), pseudo-echoes
were observed but disappeared if the number of subvoxels was sufficient (=17). The real, imaginary, and absolute NMR signals are displayed with different colors.
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calculation would exceed the memory size of the two GPUs
(16 GB), even if the memory and calculation time saving technique
described in Section 2.3 were used, the numerical phantom was
divided into 64 parts. NMR signals for the 64 parts were calculated
separately with BlochSolver and then combined to synthesize the
overall MRI signal. The calculation time for the 3D image dataset
was 3.83 h. By comparing the upper and lower images in Fig. 8, it
can be seen that the signal change caused by the magnetic field
distribution near the sphere was clearly reproduced, although
there was considerable static magnetic field inhomogeneity.

3.2. RF spoiled gradient-echo sequences

Fig. 9 shows the variations in the central cross-section acquired
using the SPGR sequence for the phase increment angle U = 117�
while the number of subvoxels in the readout direction was chan-
ged from 1 to 129. When the number of subvoxels was small, seri-
ous artifacts were observed. However, the artifacts decreased with
the increase in the number of subvoxels and were absent alto-
gether when it exceeded 65.

To evaluate the artifacts quantitatively, we calculated the mean
error En for the SPGR images when U = 0� (conventional gradient-
echo) (TR = 20 and 2000 ms) and 117� (TR = 20 ms) as
En ¼
P

i;j;kjInði; j; kÞ � I257ði; j; kÞjP
i;j;kjI257ði; j; kÞj

; ð12Þ

where Inði; j; kÞ is the image intensity of the SPGR images at the
ði; j; kÞ index of the image matrix when the number of subvoxels
is n (1 6 n 6 129).

Fig. 10 shows En plotted against n. This graph clearly shows that
the mean error is drastically reduced with the increase of the num-
ber of subvoxels and depends on TR andU. When TR = 20 ms (�T2)
and U is 117�, the mean error is less than 0.1% for more than 65
subvoxels. When TR = 20 ms (�T2) and U = 0�, the mean error is
less than 0.1% for more than 17 subvoxels. When TR = 2000 ms
(�T2) and U = 0�, the mean error is less than 0.1% even for more
than 5 subvoxels. This result clearly shows that a sufficient number
of subvoxels is required to describe the spatial modulation of the
magnetization in the voxels caused by the coherence of the trans-
verse magnetization for short TR sequences [29,30].

Fig. 11 shows typical central cross-sectional images acquired
with the SPGR sequences when the phase increment angle U was
0�, 30�, 117�, 120�, and 180�. The images shown in the upper and
lower rows are obtained by the experiment and simulation
(without molecular diffusion effect), respectively (the number of
subvoxels = 65). Although the contrasts in the images acquired



Fig. 5. Phantoms for the MRI experiments. (a and b) Susceptibility phantoms with an air-filled cylinder (diameter = 21 mm, length = 80 mm) and an air-filled sphere
(diameter = 25.4 mm). The cylinder was fixed at the center of the container filled with CuSO4 water solution (T1 � T2 � 100 ms). The sphere was supported with acrylic pipes.
(c) Relaxation time phantom comprising three plastic bottles (OD = 21 mm, ID = 20 mm, length = 60 mm) filled with different density CuSO4 water solution in a cylindrical
container filled with baby oil (T1 � 186 ms, T2 � 80 ms). The T1 (�T2) values for the CuSO4 water solution in the bottles were 114, 244, and 341 ms, respectively. (d) Multislice
phantom. A right triangle acrylic block and eight round bars were fixed in a cylindrical acrylic container (OD = 58 mm, ID = 54 mm, length = 90 mm) filled with CuSO4 water
solution (T1 � T2 � 120 ms).

Fig. 6. Theoretically calculated B1 map of the linear-drive birdcage coil. The
direction of the RF magnetic field is parallel to the x direction. The field of view is
(64 mm)2. Diameter of the birdcage coils is 64 mm. The diameter of the circle
shown above is 54 mm.
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by the experiment and by the simulation seem similar, they are not
identical. In particular, the large image intensity difference among
three bottles shown in the experimental images for U = 120 and
180� significantly decreased in the simulated images. The
difference would be caused by the molecular diffusion effect to
be shown in Fig. 12.

Fig. 12(a) and (b) show image intensities averaged over all parts
of the SPGR images acquired by the experiment and by the simula-
tion plotted against the phase increment angle U. It took about
18 h to acquire the 3D (256 � 256 � 32 voxel) images in the exper-
iments and about 17 h to calculate the 3D images for all angles
from 0� to 359� by 1� increments. Although the peaks observed
in the simulations were very sharp, those observed in the experi-
ments were less sharp.

Fig. 12(c) shows the intensity variation for a voxel calculated
using the Bloch–Torrey equation for the SPGR sequences. For the
diffusion calculation, 128 subvoxels (2-lm width) in the signal
readout direction for the voxel (0.25 mm width in the readout
direction) were used. Diffusion coefficients of 3.16 � 10�3 and
8.6 � 10�5 mm2/s for the water and the baby oil were used in the
simulation because the temperature of the phantom was raised
to about 35 �C in the experiments. This graph reproduces well
the image intensity acquired by the experiment, which demon-
strates the importance of the diffusion effect on the image contrast
for SPGR sequences [31].

3.3. Multislice imaging

Fig. 13(a) shows multislice images of the phantom shown in
Fig. 5(d) acquired with the gradient echo multislice sequence.



Fig. 7. Cross-sectional images of the air-filled cylindrical phantom. The matrix size of the numerical phantom was 256 � 256 � 16. (a) Simulation with 1 � 1 � 1 subvoxels.
(b) Simulation with 2 � 2 � 1 subvoxels. (c) Simulation with 4 � 4 � 1 subvoxels. (d) Difference between (a) and (b). (e) Difference between (b) and (c). (f) Experimental
image (image matrix: 256 � 256 � 16). The simulated and experimental images were acquired with a gradient echo sequence (TR = 200 ms, echo time = 48 ms, flip
angle = 90�, field of view = [76.8 mm]3, pixel bandwidth = 48.6 Hz). The execution times for (a), (b), and (c) were 2.28, 4.81, and 15.20 s, respectively.
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Although inhomogeneous image intensity was observed in the
image acquired with the selective excitation pulse at �40 kHz
and �25 mm from the center of the magnet, homogeneous image
intensity and the clear shape of the phantom were observed for
other slices.

Fig. 13(b) and (c) shows multislice images of the numerical
phantom calculated using BlochSolver. The numbers of subvoxels
were 7 and 2 for the readout and phase encoding directions,
respectively. The B1 distribution shown in Fig. 6 was used for the
calculation. In Fig. 13(b) and (c), the selective excitation pulses
(sincðxÞ with 1-ms duration) were approximated using 100 and
200 short square pulses, of width 10 and 5 ls, respectively. The cal-
culation times for all multislice images were about 45 and 75 min,
respectively. This result clearly shows that the calculation time for
the RF excitations was about 30 and 60 min, respectively, because
the time for the NMR signal calculation was identical for both
calculations.

Fig. 14 shows selected multislice images acquired by the
gradient-echo multislice simulation with the selective excitation
pulse (sincðxÞ with 1-ms duration) approximated with 100, 110,
115, and 120 short pulses. The numbers of subvoxels were 3 and
1 for the readout and phase encoding directions, respectively.
The first, second, third, and fourth rows represent the slice posi-
tions whose central frequencies are �40, �32, +32, and +40 kHz,
respectively. The ghost at +32 kHz disappears between 100 and
110 pulses and that at +40 kHz disappears between 110 and 115
pules. This result clearly shows that the approximation using 100
short square pulses was insufficient for precise RF excitation of
the plane, but that using 115 pulses was sufficient for simulation
of multislice imaging under this experimental condition. This
result can be understood in the following way. During the selective
excitation in the multislice sequence, isochromats in the slicing
plane and the selective excitation RF pulse rotate about the
z-axis in the same sense and in the same frequency such as
+32 kHz. However, if the RF pulse was approximated or replaced
by a short RF pulse with 10 ls duration, the phase of the RF pulse
get behind that of the isochromats by 120 degree at most because
the short RF pulse is stationary in the rotating frame and the rota-
tion cycle of the isochromats is about 30 ls. This mechanism partly
produces negative sense rotation (�32 kHz) of the isochromats
through the nutation of the isochromats. This mechanism also
works for the isochromats rotating in the negative frequency
(�32 kHz) and the isochromats are partly excited by the short RF
pulse. In this way, the ghost artifacts from the negatively symmet-
ric position can be observed. On the other hand, if the selective
excitation RF pulse was approximated or replaced by a short RF
pulse with 9 ls duration, the phase of the RF pulse get behind that
of the isochromats by 110 degree at most, the negative sense rota-
tion is not produced and the ghosting artifacts are not observed.

3.4. Processing speed

Table 1 shows a comparison of processing speeds for the Xeon
CPU and the GPU 1080 performed using the numerical phantom
(matrix size: 256 � 256 � 32) corresponding to Fig. 5(c). Because
voxels with zero-valued proton density were excluded from the



Fig. 8. Cross-sectional images of the spherical phantom. (a)–(c) experiments acquired with a gradient-cho sequence (TR = 200 ms, TE = 48 ms, image
matrix = 512 � 512 � 64). (d)–(f) simulation with the matrix size of the numerical phantom = 512 � 512 � 64. The number of subvoxels was 4 � 4 � 4 in the x, y, and z
directions. The simulated and experimental images were acquired with a gradient echo sequence (TR = 200 ms, echo time = 48 ms, flip angle = 90�, field of view = [76.8 mm]3,
pixel bandwidth = 48.6 Hz). The execution time was 3.83 h.

Fig. 9. Cross-sectional images selected from 3D image datasets of a numerical phantom simulated for the RF spoiled gradient echo sequence (TR/TE = 20 ms/6 ms, FA = 30�,
image matrix = 256 � 256 � 32) using various numbers of subvoxels. The phase u of the RF pulse was updated according to u ¼ nðnþ 1ÞU=2 (n: order of the RF pulse, U:
phase increment angle). When the number of subvoxels is larger than 65, the stripe artifacts cannot be seen. T1 and T2 for the CuSO4 water solution in the three small bottles
were 114, 244, and 351 ms, and those for the baby oil surrounding the bottles were 186 and 80 ms. The resonance frequency difference between the water and the oil was
220 Hz in the simulation. The execution times for (a)–(h) were 5.1, 9.6, 14.4, 23.8, 42.6, 80.4, 156.1, and 310.5 s, respectively.
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calculation, the actual number of isochromats used for the calcula-
tion was 52,202,496 (= 256 � 256 � 32 � 65 � 0.382955. . .). The
number 0.382955. . . is the ratio of the number of non-zero proton
density voxels to the total number of the voxels in the image
matrix.

The computation times of 2161.409 and 157.469 s were
obtained for the CPU and the GPU, respectively. By dividing the
number of operations by these computation times, we obtained
computation speeds of 506.5 and 6952 GFLOPS for the CPU and
the GPU, respectively. These computation speeds were 19.1% and
39.1% of the peak performances of 2650 and 17,746 GFLOPS for
the CPU and the GPU, respectively.

In summary, the calculation speed for the GPU-based MRI sim-
ulator was about 14 times faster than that for the CPU-based sim-
ulator when using the same number of processor units (number of
CPUs = number of GPUs).
4. Discussion

4.1. Processing speed

We discuss several aspects of the processing speed of BlochSol-
ver achieved in this study.
Fig. 11. Cross-sectional images selected from 3D image datasets acquired with the SPG
[64 mm]3).U was the phase increment angle described in the text. (a)–(e) acquired by ex
number of subvoxels was 65. The execution time for one SPGR image was about 156 s.

Fig. 10. Error rate plotted against the number of subvoxels for the RF spoiled
gradient echo sequence with (a) TR = 20 ms and U = 117� (conventional SPGR)
shown in blue, (b) TR = 20 ms and U = 0� (conventional gradient-echo sequence)
shown in brown, and (c) TR = 2000 ms and U = 0� shown in light green. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
First, the calculation time for a typical 3D gradient-echo image
of 256 � 256 � 16 image matrix with 16 subvoxels was 15.20 s.
This processing speed corresponds to a computational TR of
3.7 ms, which is much less than the typical TR in MRI experiments.
Therefore, this result suggests that MRI studies using BlochSolver
will be much more efficient than experimental MRI studies, even
when using large image matrices.

Next, the calculation times for multislice imaging for eleven
256 � 256 pixel gradient-echo images with 7 � 2 subvoxels were
45 and 75 min using 100 and 200 short square pulse approxima-
tions, respectively. Because multislice imaging is one of multi-
pulse experiments and the slice profile is essential in multislice
imaging, a large number of subvoxels (469,762,048) is required
to obtain artifact-free images. To provide sufficient memory for
the numerical phantom, system parameters, and components of
the isochromats, about 24 GB memory (�4.7 � 108 � 4 � 12) was
required, which exceeded the memory size of the GPU boards
(16 GB). However, by using the memory and calculation time sav-
ing technique developed in this study, multislice simulation for
this matrix size became possible.

Finally, the calculation speed of the GPUs was about 14 times
that of the CPUs used in this study. Because GPUs and CPUs use
identical semiconductor technology, the difference in processing
speed between GPUs and the CPUs is unlikely to change in the near
future.
4.2. Processing speed: Comparison with the earlier study

As described in the Introduction section, Xanthis et al. reported
the first GPU-based MRI simulator in 2014 [13]. They reported
31–228 times processing speed advantage over the CPU-based
MRI simulation. However, because developments in the CPU tech-
nology have made it possible to perform parallel processing such
as AVX (advanced vector extension) 2 or 3 for the CPUs, the pro-
cessing speeds of the CPUs approaching those of the GPUs. As a
result, our present processing speed comparison between them
became about 14 times with AVX 2 and 83 times without AVX 2.

To compare the processing speed between the previous and the
present MRI simulators quantitatively, we performed a typical 2D
single slice gradient-echo MRI simulation which was supposed to
be identical to that performed in the previous study. The simula-
tion condition is as follows; the number of isochromats:
1,350,000 (150 � 150 � 60), TR = 50 ms, selective excitation pulse:
R sequences (TR/TE = 20 ms/6 ms, FA = 30�, image matrix = 256 � 256 � 32, FOV =
periment at 1.5 T. (f)–(j) calculated with BlochSolver (without diffusion effects). The



Fig. 12. Phase increment angle dependence of the image intensity in the relaxation
phantom. (a) Experiments. (b) Simulations without molecular diffusion effects. (c)
One voxel simulation with a molecular diffusion effect. The numbers written in the
legends of the graphs are T1 values.
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three lobe sinc pulse (300 short pulse approximation with 3 ms
duration time), data-sampling interval: 10 ls, the number of the
sampling points: 256, k-space matrix: 256 � 256. The calculation
times for the previous and the present studies were 282 and
4.06 s, respectively. Because they used a single GPU board of
C2070 (NVIDIA) with peak performance of 1.03 TFLOPS (single pre-
cision) and we used dual GPU boards of GTX 1080 with peak per-
formance of 17.746 TFLOPS, the processing speed advantage due to
the hardware was about 17.2. Therefore, we think that the process-
ing speed advantage of about 70 times was achieved by about four
times improvement of software implementation, which was prob-
ably due to the difference between the use of register file (present
study) and shared memory (previous study) for NMR signal
calculation.

4.3. Floating-point calculations: Single vs. Double

In many scientific and technical calculations, calculations are
performed in terms of 64-bit double-precision floating-point oper-
ations. Calculation using current high-end CPUs is usually per-
formed in double precision. In addition, for such CPUs, the
difference in speed between double-precision and 32-bit single-
precision floating-point operation is small. However, for GPUs,
the time for a double-precision operation is significantly more than
that for a single precision operation (by a factor of 2–32). In partic-
ular, for the inexpensive GPU board (GTX 1080) used in this
research, the factor is actually 32 (single precision: 8.9 TFLOPS,
double precision: 0.277 TFLOPS [emulation]).

On the other hand, because white noise caused by thermal noise
is always present in experimental MR images, the intensity of
observable MR image artifacts can be at least 0.1% different from
equivalent artifact-free images. Therefore, there is no problem if
the calculation accuracy for voxel values is within 0.1%. However,
in the MRI signal calculation for 2563 voxels, for example, the sig-
nal intensity is summation of more than about 224 (�16,000,000)
transverse magnetization components. This means that the cancel-
lation of significant digits would occur if we were to use 32-bit
floating-point representation. We therefore performed the calcula-
tion of evolution and the local summation of isochromats (actually
1024 isochromats) using single-precision floating-point operations
and performed the total summation of these local signals in double
precision. In this way, we could achieve both rapid calculations and
adequate precision at the same time.

4.4. Subvoxel

Because the goal of an MRI simulator is to obtain an accurate
MRI signal for a continuous object, a crucial issue is the discretiza-
tion of the nuclear magnetization of the object. If the processing
speed is sufficient, the simple method of finely dividing a voxel
into many subvoxels and calculating with them will be effective.
Therefore, we will discuss about the practical methods to deter-
mine the appropriate number of the subvoxels below. There are
two typical cases where subvoxels are indispensable.

First, for the gradient echo sequences, static magnetic field
inhomogeneity causes intravoxel phase dispersion, which causes
a signal decrease or loss. In this case, the practical method to deter-
mine to the appropriate number of the subvoxels is to change the
number of the subvoxels along x, y, and/or z directions and repeat
the MRI simulations as shown in Fig. 7. If the difference between
the images with different numbers of subvoxels becomes small
or negligible, the appropriate number of the subvoxels can be
determined.

The second case involves fast gradient-echo sequences and
multislice imaging where coherence of the nuclear magnetization
is essential [29]. In this case, if the number of subvoxels is
sufficient to express the variation in nuclear magnetization within
the voxel, i.e., the wave number in the signal-readout gradient
direction, artifacts can be removed and the voxel intensity can be
correctly reproduced, as shown in Fig. 9. The practical method to
determine the appropriate number of the subvoxels is to use the
data-acquisition window shown in Fig. 4. In this case, if the num-
ber of subvoxels is insufficient, pseudo-echoes are observed in the
data-acquisition window. In such case, we can find the appropriate
number of the subvoxels by repeating the simulation by increasing
the number of the subvoxels as 1, 3, 5, 7, . . . and observing the NMR
signal in the data-acquisition window. In some cases, pseudo-
echoes are observed far from the center of the k-space. In such
case, the number of subvoxels along the phase encoding direction
should be increased and the MRI simulation should be repeated to
obtain an artifact-free image. Anyway, it is difficult to predict gen-



Fig. 13. Cross-sectional images acquired by (a) experiment, (b) simulation with a selective excitation pulse (a 100 short-square-pulse approximation to a sinc pulse), and (c)
simulation with a selective excitation pulse (a 200 short-square-pulse approximation to a sinc pulse). The pulse sequence used to image the multislice phantom shown in
Fig. 6(d) was a gradient-echo multislice sequence (TR = 1200 ms, TE = 6 ms, number of slices = 11, time between RF pulses = 100 ms, slice thickness = 5 mm, FA = 90�, FOV =
[64 mm]2, image matrix = 256 � 256). The ghost artifacts observed in (b) were not visible in (c), as shown by the arrows. The execution times for (b) and (c) were 45 and 75
min.
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eration of pseudo-echoes, however, the extended phase graph
(EPG) approach [30] may be useful for the artifact prediction.

As described above, being able to apply appropriate settings for
subvoxels is an important and powerful aspect of MRI simulators,
and with the speeding up of calculations in BlochSolver, it becomes
simple and practical.

4.5. Sequence compatibility

In the imaging experiments and simulations described in this
study, the experiments were conducted first, followed by the
creation of numerical phantoms to simulate the real phantoms.
Calculations were performed with BlochSolver using the pulse
sequences used in the experiments. Improvements were added to
BlochSolver so that the experimental results and the simulation
results agreed with each other. In this way, by designing the same
sequences as those used in the experiments, comparison between
the simulations and the experiments became straightforward.

In this study, we used the pulse sequence format that we have
been using for many years in our laboratory. Therefore, if we apply
BlochSolver to clinical machines or other research-oriented MRI
machines, it will be necessary to prepare translations from those



Fig. 14. Multislice images acquired by the gradient-echo multislice simulation with a selective excitation pulse (sincðxÞ with 1-ms duration) approximated with 100, 110,
115, and 120 short pulses. The numbers of subvoxels were 3 and 1 for the readout and phase encoding directions, respectively. The first, second, third, and fourth rows
represent the slice positions whose central frequencies are �40, �32, +32, and +40 kHz, respectively. The ghost at +32 kHz disappears between 100 and 110 pulses and that at
+40 kHz disappears between 110 and 115 pules.

Table 1
Comparison of CPU and GPU processing speeds for an identical MRI simulation. The number of operations includes only multiplications and summations for the precession and
relaxation of the isochromats and does not include sine, cosine, and exponential function calls and global summations for NMR signal calculation. This value is calculated by
multiplications of the number of isochromats (52,202,496), the number of k-space sampling points (256 � 256 � 32), and the number of operations (10) used for integration of
the Bloch equation. The ratio of the number of sine, cosine, and exponential function calls to that of multiplications and summations is 3:40. The processing time for the sine,
cosine, and exponential function calls depends on the architecture of the processor and the generation of the GPU. The ratio of the processing time for the special function calls to
that for the whole operations was about 20% for GTX-1080. The peak performance means the speed of the arithmetic logic units published by the manufacturers. The
computational efficiency is the ratio of the measured computation speed to the peak performance.

Device Xeon E5–2699v3 � 2 GeForce GTX–1080 � 2 Ratio (GPU/CPU)

Number of isochromats 52,202,496 1
Number of operations (�109) 1,094,766 1
Computation time (s) 2161.409 157.469 0.07285

12,999 (w/o AVX 2) 0.01211
Computation speed (GFLOPS) 506.5 6952 13.726

84.2185 (w/o AVX 2) 82.55
Peak performance (GFLOPS) 2650 17,746 6.70
Computational efficiency 0.191 0.392 2.05
Optimization technique OpenMP, AVX 2 MRI signal calculation within the register file

Register optimization
Customized sin, cos, exp.
Loop size optimization

R. Kose, K. Kose / Journal of Magnetic Resonance 281 (2017) 51–65 63



64 R. Kose, K. Kose / Journal of Magnetic Resonance 281 (2017) 51–65
sequence formats to our sequence format, or to develop a new
sequence-description language that is compatible with many pulse
sequence formats.

4.6. Diffusion effect

As shown in Fig. 12, by introducing a molecular diffusion effect
to the SPGR sequence, it was possible to reproduce the changes in
the image intensity acquired by the experiment when the phase
increment angle U was changed. However, in order to calculate
the molecular diffusion effect, it was necessary to calculate second
partial derivatives using adjacent subvoxels. This operation is not
compatible with the high-speed calculation of image subvoxels
using a GPU. Therefore, we consider it more practical to multiply
the diffusional signal attenuation that is individually calculated
in each voxel by the components of the isochromats in the voxel
used for MRI signal calculation.

4.7. Chemical shift and T2
⁄

The present GUI of BlochSolver shown in Fig. 2 cannot be
used for objects with chemical shift distributions and T2⁄ effects.
For objects with various chemical shifts (e.g., water and fat), if
required number of numerical phantoms, system parameters,
and nuclear magnetization components are individually defined,
calculations using BlochSolver can be performed for individual
objects with different chemical shifts (resonance frequency).
Although various approaches to the representation of T2⁄ effects
on MR images have been proposed [7,10], there has been no
straightforward solution. We consider that the T2⁄ effects
could be modeled by distribution of objects with different res-
onant frequencies within the voxels and calculated with
BlochSolver.

4.8. Future directions

In the development of BlochSolver, the primary purpose was to
improve calculation speed for the NMR signal with constant signal
readout gradients. In other words, it is currently unsuited to non-
Cartesian sequences such as the spiral sequence where the gradi-
ent field strength changes during the signal readout periods. Cur-
rently, BlochSolver cannot be used for parallel transmission or for
parallel imaging. Extension to these two directions is now
underway.

In this study, BlochSolver used two GPU boards optimized for
single-precision floating point operations. Because the GPU we
used is inexpensive (<1000 USD), a large-scale parallel system
could be constructed easily. In addition, with calculation speeds
approximately doubling every 2 years, we consider that more real-
istic simulations (e.g. multislice fast spin-echo) could be performed
more quickly in future if we were to adopt large-scale parallel
computing systems in the future. In addition, applications of Bloch-
Solver to motion and flow of the imaging objects will be an inter-
esting extension of this study.
5. Conclusion

We have developed a GPU-optimized MRI simulator (BlochSol-
ver) for experimentally compatible pulse sequences and performed
three types of experiments and corresponding simulations. Our
results demonstrate that the calculation speed of the GPU-based
system was about 14 times faster than that of a CPU-based system
when the same number of processing units is used. MR images
acquired by experiment could be reproduced by using an appropri-
ate number of subvoxels. We demonstrated that BlochSolver could
be used for 3D MRI simulations that involved image matrices of
practical sizes. In conclusion, we expect the MRI simulators to
become powerful and indispensable tools for MRI research and
development in near future.
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