

ヒトの脳

ヒト胚子化学固定標本の

MR microscopyによる三次元形態計測

筑波大学数理物質科学研究科 電子·物理工学専攻 巨瀬 勝美

ヒト脳の形態形成から行動生成に至る発達のダイナミクス(2014-1-30):東京大学教育学部

- 1. ヒト胚子化学固定標本(Kyoto Collection)
- 2. 初期のトライアル(縦型SCM&永久磁石MRI)
- 3. 超並列型MRIによる1200体の三次元撮像
- 4.9.4T超伝導磁石による高分解能撮像
- 5. 最近の試み(512 x 512 x 1024画素)
- 6. 将来展望
- 7. むすび

京都ヒト胚子コレクション (1)

京都大学*には、1961年から1974年にかけて、組織的に収集された、数万体のヒト胚子固定標本が所蔵されている.

- この標本は、世界最大のヒト胚子標本であり、ヒトの遺伝学
- ・発生学における極めて貴重なコレクションとなっている.

(世界第二位のヒト胚子コレクションは、世界的にも有名な、

Carnegie Collectionであるが、1900年前後に収集されたもので

あり, 標本数は僅か数千体である)

*京都大学大学院医学研究科附属 先天異常標本解析センター: From the Website →

京都ヒト胚子コレクション (2)

このようなコレクションは,将来,二度と得ることができない極めて貴重なものであるので,非破壊的三次元計測が強く望まれている.

化学固定標本には、保存液(ホルマリン水溶液)として、 MR撮像に適したプロトンが大量に含まれているため、MRマ イクロスコピーは、化学固定標本の三次元形態計測法として、 極めて有力である.

Human embryo

Mid-sagittal plane

Protons of the formalin solution are visualized.

京都プロジェクト?

そこで、京都大学と筑波大学では、京都コレクションの中の 代表的な(数)千体程度の標本の三次元MR撮像を開始するこ とを決定した(1998).このプロジェクトを開始するに当 たっては、Duke大学で始められつつあったVisible human embryo project に大きな影響を受けた.

Bradley Smith, Visualizing human embryos. Scientific American, 1999.

Carnegie Stage

Carnegie Stage: The human developmental stage is divided into from 13th to 23rd stage according to its external appearance. Sample diameter: $4 \sim 15$ mm

First trial using 4.7T MR microscopy

まず,最初のトライアルとして,4.7Tの縦型超伝導磁石を用いた,標準型MRマイクロスコープを用いて撮像を行った.RFプローブには,Doty社の<mark>鞍型コイル</mark>を用いた勾配磁場プローブを用いた.

3D gradient echo TR=200ms TE=5ms 200μm cube, 53 min. April 1999.

1.0 T永久磁石を用いたMR microscope (1999)

ソレノイドコイルは, 鞍型コイルに比べ約3倍のSNRを有し, サンプ ルサイズに合わせた最適化が容易:3倍のSNRの向上は, 2倍の強 度の静磁場の使用と同じ効果を有する.

Cross sections of human embryos selected from 1.0 T 3D MR microscope images: **December 1999**

1,204 Embryos selected for the Kyoto Project

Carnegie Stage	Number of samples	Diameter max (mm)	Length max (mm)	Voxel size micron cube
13	29	3.3	4.0	40, 45
14	138	5.2	7.0	40 - 55
15	125	6.5	8.0	45 -55
16	126	8.0	8.5	50 - 60
17	128	8.8	10.1	70
18	124	8.8	11.0	80
19	147	9.0	15.0	100
20	141	10.5	16.0	100
21	132	10.5	20.0	120
22	62	14.0	23.0	120, 150
23	52	-	-	120, 150

ヒト胚子サンプルは、10%ホルマリン水溶液に満たされた状態で、試験管の中に挿入されている.

臨床用MRIを用いた超並列型MRマイクロスコープ

8CHアレイ型プローブ. 30 cm (W) x 14 cm (H) x 23 cm (D).

1.5T臨床用MRIを用いた超並列
型MRマイクロスコープ
(@筑波大附属病院放射線科)

Fixed Mouse Images at 1.5 T: February 2002

2D cross sections selected from 3D datasets of chemically fixed mouse fetuses simultaneously acquired with a 3D GE sequence (TR/TE/FA:100ms/12ms/90deg). Matrix:128³ Voxel size: (200 μ m)³. NEX: 1. Measurement time: 28 min

Super-Parallel MR Microscope at 2.35 T

4CH array probe: Used for 10, 12, 15, 20 mm NMR tubes 8CH array probe: Used for 8 mm NMR tubes

System Overview 40 cm bore Bruker animal MRI magnet

by Y. Matsuda, Y. Otake, S. Ono, S. Handa, T. Haishi

京都ヒト胚子3DMRマイクロスコープ 撮像プロジェクトにおける課題

1. Imaging speed

 \rightarrow super-parallel MRM at 2.35 T

2. Optimized RF coil for each embryos \rightarrow solenoid coils for 8-20 mm tube

3. Sample transport and handling ? \rightarrow NMR sample tubes with formalin solution

4. Imaging pulse sequence ? $\rightarrow T_1$ weighted spin-echo/gradient-echo sequences

Optimized RF coils

For 20 mm OD NMR tubes

For 15mm OD NMR tubes

For 12 mm OD NMR tubes

For 10 mm NMR tubes

Diameters of the RF coils were optimized for various size of the human embryos.

Sample Transport and Handling Problems

京都と筑波は約500kmも離れているので, 胚子をホルマリン水溶液で満たしたNMRサン プル管に入れた状態で運搬した.

MRマイクロスコープ画像も、同じサンプル管に入れたまま撮像した.

これにより, 運搬の際の①機械的ショック, ②標本の乾燥, ③生物学的汚染, ④磁化率ア ーチファクトの問題を解決した.

embryo specimens

3D Image Matrix and Mid-Sagittal Plane

128

image matrix: 128 x 128 x 256

Human Embryo CS13 - 16

(50 μm)³

(55 μm)³

 $(40 \ \mu m)^3$ $(45 \ \mu m)^3$

Human Embryo CS17 - 20

Human Embryo 20 - 23

 $\begin{array}{cccc} CS20 & CS21 & CS22 & CS23 \\ (120 \ \mu m)^3 \ \mbox{spatial resolution} \end{array}$

MR Microscopy of Human Development

MR Microscopy of Human Development

13

14

15

S

16

17

By Kyoto & Tsukuba Universities

エンブリオカタログ(1,204体ウェブで公開中)

Carnegie Stage 13 (1) Carnegie Stage 23 (1) 1509a 19312a 20018a 25425a 25704a

Midsagittal sections are displayed according to the serial numbers.

次のプロジェクト:空間分解能の向上

<u>国素サイズ小</u>, SNR低

画素サイズを小さくする(空間分解能を向上させる)と、画素あたりのSNRが低下する、よって、高い分解能を達成するためには、 SNRの向上が不可欠である.

空間分解能の向上=SNRの向上

- 画素(単位体積)あたりのSNRを向上させるためには
- 1.静磁場の増強 SNR \propto H^{7/4}
- 2. <mark>効率的なRFコイル</mark>の使用:
 - 開口径の最適化、ソレノイドコイルの使用(3倍)
- 3. 効率的なパルスシーケンスなどの使用
 - TEの短縮と撮像帯域最適化, Compressed Sensing
- 4. 造影剤の使用(ヒト胚子では困難, マウス等ではOK)
- 5. RFコイルの冷却
- (6. ダイナミックレンジの拡大)

9.4T超伝導磁石を用いたヒト胚子標本の撮像

SNRを向上させる最も直接的な手法は,静磁場強度を向上させることである.

例えば, 4倍強力な静磁場(2.35T→ 9.4T) を用いると, SNRを11倍程度向上させること ができる(SNR∝H^{7/4}).

しかしながら, 鉛直ボア型超伝導磁石では, ソレノイドコイル(3倍のSNRゲイン)が使えな いため, SNRの向上は, 4倍程度に留まるが, シーケンスの改良などによって,

128×128×256画素から**256×256×512**画 素への分解能の拡大は可能である.

9.4 T 89 mm Vertical bore SCM 2005年, 科研費Aで購入

9.4T MR microscope

by Y. Otake, S. Handa, T. Haishi, S. Utsuzawa

3D High Resolution Imaging at 9.4T

化学固定ヒト胚子標本CS22(京都大学先天異常標本解析センター) TR/TE=100ms/5ms, 3DGE, 256×256×512, (60μm)³, 12NEX

9.4Tにおけるヒト胚子のMR microscopy (1)

試験管の直径は、8 mm, 10 mm, 12 mm, 15 mm

9.4Tにおけるヒト胚子のMR microscopy (2)

正中断面像, Voxel: (40µm)³, (45µm)³, (50µm)³, (60µm)³

9.4Tにおけるヒト胚子のMR microscopy (3)

CS20

CS21

CS22

9.4Tにおけるヒト胚子のMR microscopy (4)

100° 120° 140° 160°

9.4Tにおけるヒト胚子のMR microscopy (5)

100° 120° 140° 160°

9.4Tにおけるヒト胚子のMR microscopy (6)

100°

120°

140°

9.4Tにおけるヒト胚子のMR microscopy (7)

100°

120°

140°

160°

9.4Tにおけるヒト胚子のMR microscopy (8)

9.4Tにおけるヒト胚子のMR microscopy (9)

9.4Tにおけるヒト胚子のMR microscopy (10)

100°

120°

140°

9.4Tにおけるヒト胚子のMR microscopy (11)

Head sections of CS22

9.4Tにおけるヒト胚子のMR microscopy (12)

Body sections of CS22

9.4Tにおけるヒト胚子のMR microscopy (13)

Body sections of CS22

9.4Tにおけるヒト胚子のMR microscopy (14)

肝臓の部位の断層

今後の方向

1. 256×256×512画素による1,200体の胚子標本の撮像(技術はほぼ開発済み:2年で撮像)

2. さらなる高分解能撮像手法の開発
256×256×512 → 512×512×1024
SNRは8倍必要.静磁場の増強
(9.4T→18.8T)で約3倍.残りの2倍を工夫?

512×512×1024画素の高分解能撮像(1)

2005年以降の新しい技術

- 1. デジタルトランシーバー
- 2. 64bit Windows
- 3. Compressed Sensing (データの効果的間引き)

アナログトランシーバー

デジタルトランシーバー

512×512×1024画素の高分解能撮像(2)

ソレノイドコイルを使用することによりSNRを3倍 とする

512×512×1024画素の高分解能撮像(3)

TR=200ms, TE=6ms, gradient echo sequence at 4.74T Matrix : 512 × 512 × 1024, Voxel size : $(30\mu m)^3$

512×512×1024画素の高分解能撮像(4)

左 128×128 × 256 (120µm)³ 右 512×512 × 1024 (30µm)³

512×512×1024画素の高分解能撮像(5)

上 128 × 128 × 256 (120µm)³ 2003年攝像

下 512 × 512 × 1024 (30µm)³ 2013年攝像 このアプローチの問題点:

試料管を短くカットして詰め替えなければならず, 大量のサンプルに対して実施するのは非現実的

よって、高磁場縦型超伝導磁石(18.8T/54m)、も しくは、横型超伝導磁石(7T/400mm)を用いたMR microscopeの開発が有望

むすび

 1. 筑波大学MRラボにおける京大の胚子標本の MR microscopy撮像の歴史をレビューした.

2. これまで、128×128×256画素での1,200体の 撮像は終了しており、解析研究に使用されている.

3. 256×256×512画素の撮像技術は完成しており、今後1,200体の撮像を目指したい.

4.512×512×1024画素の撮像技術の目処は. 立っているが、大量撮像のためには、新規システ ムの開発が不可欠である.

共同研究者

京都大学

- 塩田浩平先生,山田重人先生,上部千賀子先生 筑波大学
- 拝師智之博士(MRTechnology)
- 松田善正博士(日立メディコ)
- 宇津澤慎博士(Schlumberger(米))
- 大竹陽介氏(日立中央研究所,博士課程在学中)
- 半田晋也博士(Quality Electrodynamics(米))
- 小野真也氏(富士通エフ・アイ・ピー)
- 大矢和輝氏(NTT西日本)

Thank you for attention!

