

My brain

MRI装置の仕組みと 計測の概要

筑波大学数理物質系

物理工学域 巨瀬 勝美

Ultra-high field MRI Workshop at Todai-Kashiwa (2013-11-15)

- 1. はじめに
- 2. MRI装置の構成
- 3. MRIシステムの立ち上げ
 - ー磁石のインストールから撮像まで
- 4. MR microscopy画像
- 5. むすび

MRIとは?

超伝導磁石を用いたMRI(東芝MS) 永久磁石を用いたMRI(日立メディコ)

磁気共鳴イメージング(Magnetic Resonance Imaging)の略. 装置 自身もMRIと呼ぶ. 水や脂肪に含まれる水素原子核の分布を, NMR 現象を利用して画像化する装置. 国内で約6,000台が普及している.

典型的MR画像(1):人体用MRI

T1W images, transverse and sagittal section at 3T

典型的MR画像(2):MR microscope

3DSE, TR = 800ms, TE = 20ms, NEX = 1, FOV = $(40.96 \text{ mm})^3$, Matrix = 512 × 512 × 128, Voxel size = $80 \mu \text{m} \times 80 \mu \text{m} \times 320 \mu \text{m}$

- 1. 放射線被曝がなく安全に人体内部の構造を描出でき
- る. 高周波磁場と変動磁場に規制. 吸引事故はある
- 2. **軟部組織の画像コントラスト**に優れ, 頭部, 脊髄, 関節 など骨に囲まれた部位では最優先の手法
- 3. 分子のマクロ・ミクロな運動に関する情報により、体内 組織の物理的・化学的情報を描出できる:血管や体液の 分布や流れ、分子拡散の可視化
- 4. 脳機能計測:血液の局所的な磁化率の時間的変化を 観測. 神経科学における革命的手法

MRIで使われる原子核種

	核種	スピン量子数	共鳴周波数(MHz/T)	天然存在比(%)
	¹ H	1/2	42.6	99.985
	¹⁹ F	1/2	40.1	100
+	³ He	1/2	32.4	-
	³¹ P	1/2	17.2	100
	¹²⁹ Xe	1/2	11.8	26.44
•	²³ Na	3/2	11.3	100
-	¹³ C	1/2	10.7	1.108
	² H	1	6.54	0.015
-	¹⁷ O	5/2	5.77	0.037

実用的なレベルでイメージングに使用されるのは¹Hのみ

hyperpolarized ³HeのMR画像

超偏極³Heガス吸入における時間分解最大値投影(MIP)像. 1~9 秒までは吸入期. 10~21秒は呼吸停止期. 22~25秒は呼気期. J. H. Holmes et al. Magn. Reson. Med. 59:1062-1071(2008).

hyperpolarized ¹³CのMR画像

大腿静脈より1ml/sで静注後に1秒毎に撮像(Yorkshire pig). M. Ishii et al. Magn. Reson. Med. 57:459-463 (2007).

²³Na(NA=100%)のMR画像

1.5Tにおける¹H-FLAIR像 4.7Tにおける²³Na像(発作24時間後) R. Bammer, ISMRM2008 weekend course

¹⁷O(NA=0.037%)のMR画像

¹⁷O

 ^{1}H

7 TにおけるNatural abundanceの¹⁷O像(左)と¹H(右) 共鳴周波数は40.8MHzと300MHz Hoffmann et al. MRM, 2011.

生体内存在量と天然存在比の両方が大きくないと実用的でない!

1. はじめに

- 2. MRI装置の構成
- 3. MRIシステムの立ち上げ
 - ー磁石のインストールから撮像まで
- 4. MR microscopy画像
- 5. むすび

MRI装置の構成(アナログ&デジタル)

Kumquat in a solenoid coil probe

アナログとデジタルの両トランシーバーを用いたMRIシス テム.システム移行中に撮られた珍しいシステム構成

MRI装置の構成(ブロック図)

MRIは、信号検出系(磁場系)と計測制御系(電気系)に分けられる

MRI装置の構成

信号検出系(マグネトニクス?)

- 静磁場発生磁石(超伝導磁石,永久磁石) 勾配磁場コイル(円筒形,平板型,シールド(y/n)) RFコイル(円筒形,サーフェスコイル,アレイコイル) 計測制御系(エレクトロニクス)
 - 計算機(ミニコン→Workstation→PC→Tablet)
 - RFトランシーバー(アナログ→デジタル)
 - パルスプログラマ(MPU, DSP, FPGA, PC)
 - トランスミッター(1W~50kW)
 - グラジエント電源(±10A~±500A,リニア→PWM)

MRI装置の構成:磁石

超伝導磁石(9.4T) >>> 永久磁石(0.2T)

MRI装置の構成:永久磁石の利点!

永久磁石の屋外への設置例(portability & openness)

MRI装置の構成: 勾配磁場コイル

平板型勾配磁場コイル

円筒形勾配磁場コイル

MRI装置の構成: 勾配磁場コイル

Gz

Gx

MRI装置の構成: RFコイル

キャパシタを用いた分割により、自己共振周波数を低下

MRI装置の構成: RFコイル

LC並列共振RFタンク回路

キャパシタを用いた分割により、自己共振周波数を低下

MRI装置の構成: 勾配磁場プローブ

ソレノイドRFコイルを用いた勾配磁場プローブ(堀賀他)

MRI装置の構成:計算機

歴史的に主役は交代してきた.次はTablet?

MRI装置の構成:トランシーバー

Analog $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ Digital

アナログとデジタルの違い: DC noise?

どちらのトランシーバーでも、同様のimage qualityが得られた

Cross sectional images acquired with the analog and the digital transceivers using a 3DSE sequence with TR/TE = 800ms/20ms, FOV = (40.96 mm)³, **image matrix:** 512² x 64, NEX = 1

アナログとデジタルの違い: DC noise?

アナログトランシーバーでは、DCオフセットによる輝点が見られた

Cross sectional images acquired with the analog and the digital transceivers using a 3DSE sequence with TR/TE = 800ms/20ms, FOV = (40.96 mm)³, **image matrix:** 512² x 64, NEX = 1

アナログとデジタルの違い:位相安定性?

デジタルトランシーバーでは, 均一なバックグラウンドノイズが観測された. いっぽ う, アナログトランシーバーでは, アナログ回路の非線形性や位相の不安定性に 起因すると思われるゴースト状のアーチファクトが観察された.

MRI装置の構成:パルスプログラマ

1. Microprocessor

- 2. DSP (digital signal processor)
- 3. FPGA (field programmable gate array)
- 4. PC with a large buffer memory

PCを用いたものは柔軟性に富み開発時間も短い(Patented)

(intel

- 1. はじめに
- 2. MRI装置の構成
- 3. MRIシステムの立ち上げ
 - ー磁石のインストールから撮像まで
- 4. MR microscopy画像 5. むすび

冷えた状態で出荷された(cold shipping) 超伝導磁石(2013-9-24)

設置作業:門柱でリフトアップして脚を取り付ける

液体窒素と液体ヘリウムの補給. その後, 励磁. 9.40433637T

磁石のインスト終了.5ガウスラインは、半径約1m(要注意!)

MR microscopy用グラジエントコイルプローブ(平板型Gコイル)

内径12.8mm, 4ターンソレノイド. 線径1.5mm(キャパシタで2分割)

分割なしのとき、324MHzで50 Ω マッチング → 400MHzへC分割

15pFチップキャパシタで2分割により400MHzでマッチング

グラジエントコイル装着前のプローブ(直径53mm)

54 mm

開口径40mmの平板型グラジエントコイルプローブ → 1/2へ

	ROI target	不均一性 [%]	1層の効率 [G/cm/A]	コイル間ギャッ プ[mm]	巻線径 [mm]	電流面径 [mm]	1層の 巻き数
Gx	40 mm 球	25.7	0.35	55	0.5 0.4	79	14
Gy		29	0.28	58			12
Gz		9.8	0.8	60			21

ギャップ54mmのワイドボア用に設計されたGコイル(by Ishizawa)

38 mm

Gxコイル(両面) Gyコイル(両面) 直径0.26mmのフォルマル被覆銅線で作成

Gxの実装状態. 勾配磁場の電流効率は2.8G/cm/A. R=3.1Ω

Gyの実装状態. 勾配磁場の電流効率は2.2 G/cm/A. R=2.6Ω

Gzの実装状態. 勾配磁場の電流効率は4.2G/cm/A. R=1.3Ω

仮止めの状態で使用中に、 グラジエントコイルが破壊

破壊されたGxコイル. 3Aで、1cmあたり30gw程度の力を受ける.

Gコイルとリード線部分を,エポキシ系樹脂で固めて完成!

12.8 mm

ファントム撮像. TR/TE=200ms/20ms, 50µm立方.

このセクションのまとめ 超伝導磁石とMRIコンソール を導入し、勾配磁場プローブ を製作すれば、高性能のMR microscopeが完成する.

- 1. はじめに
- 2. MRI装置の構成
- 3. MRIシステムの立ち上げ
 - ー磁石のインストールから撮像まで
- 4. MR microscopy画像 5. むすび

4.7Tにおけるイチゴの撮像(2563撮像)

とちのおとめ

TR/TE=200ms/3.5ms 3DGRE, 256³ **(125µm)³**, 1NEX 維管束構造の可視化 TR/TE=600ms/12ms 3DSE, 256³ (100μm)³, 1NEX Porous structure

256×256 ×256 pixels, (50 μm)³ voxel, (12.56 mm)³ FOV

内径40mmのプローブを使用

20.48 mm

5.12 mm

3D High Resolution Imaging at 9.4T

化学固定ヒト胚子標本CS22(京都大学先天異常標本解析センター) TR/TE=100ms/5ms, 3DGE, 256×256×512, (60µm)³, 12NEX

- 1. はじめに
- 2. MRI装置の構成
- 3. MRIシステムの立ち上げ
 - ー磁石のインストールから撮像まで
- 4. MR microscopy画像
- 5. むすび

むすび

- 1. MRI装置の構成に関して, 実例を中心とした紹介を行った.
- 2.9.4Tの超伝導磁石を用いたMR microscopyの 構築のプロセスを紹介した.
- 3.4.7Tの超伝導磁石を用いたMR microscopy画 像の紹介を行った.

Special Thanks to MRLab I MRTechnology

